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1 Introduction 

Among neurological disorders, brain tumors are among the most life-threatening, and their early 
diagnosis is critical to improve treatment outcomes. Because of its excellent spatial and tissue-
contrast resolution, MRI remains the most commonly used non-invasive modality for the 
identification of tumor type, extent, and progression [1]. More recently, deep learning has 
achieved impressive success in automating the classification of brain tumors, thus having the 

potential to alleviate the workload of radiologists while improving diagnostic consistency [2, 3]. 
Despite this progress, several challenges remain, which severely limit the clinical adoption of deep 
learning models in medical imaging. 
Most of the existing works focus on maximizing classification accuracy while usually ignoring 
the requirements necessary for real deployment, such as model calibration, reliability of 
confidence estimates, and computational efficiency. Poor calibration can lead to overconfident yet 
incorrect predictions, which is not acceptable in safety-critical settings such as tumor diagnosis 
[4]. Furthermore, many state-of-the-art models are built using highly complex architectures with 

very costly computation and therefore could not be used in any time-sensitive clinical workflows 
or resource-limited devices [5]. The above-mentioned limits emphasize the necessity for 
optimization in a holistic manner where predictive performance needs to be balanced together 
with reliability and inference efficiency. 
Bio-inspired optimization methods, particularly swarm intelligence approaches such as Particle 
Swarm Optimization (PSO), have shown strong capability in navigating high-dimensional, non-
convex search spaces and are increasingly used in neural architecture and hyperparameter 

optimization [6-8]. However, prior works often optimize a single objective typically accuracy 
while ignoring competing goals such as calibration and latency. Such single-objective 
formulations cannot fully address the multi-faceted requirements of trustworthy medical artificial 
intelligence. 
This study proposes a multi-objective bio-inspired hyperparameter optimization framework to 
improve the performance and trustworthiness of convolutional neural networks for the 
classification of brain tumors in MRI images. The proposed approach jointly minimizes a 

calibration-aware objective structure involving classification error, expected calibration error, and 
inference latency to ensure both the accuracy and trustworthiness of the model. A customized 
Multi-Objective Particle Swarm Optimization mechanism is proposed to navigate the search space 
effectively and determine Pareto-optimal hyperparameter configurations. The compactness of the 
underlying CNN architecture allows structural flexibility and computational efficiency while 
maintaining its discriminative capability. The performance of the proposed framework is 
evaluated on a comprehensive set of experiments involving accuracy assessment, calibration 
analysis, latency measurement, and Grad-CAM interpretability. Experimental results evidence 
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that the optimized model yields strong diagnostic performance with improved probability 
calibration and fast inference, which positions the model effectively for practical deployment in 
medical imaging. Overall, this work contributes to a robust pathway for developing dependable, 
clinically applicable artificial intelligence systems. 

2 Related Work  

Brain tumor classification from MRI has been widely explored across various methodological 
families, including classical machine learning, deep learning architectures, and bio-inspired 
optimization methods. Early approaches relied on handcrafted features and conventional classifiers, 
reaching reasonable accuracy but lacking scalability and robustness. More recent works employ 

CNN-based models or rely on transfer learning in order to improve feature representation, but most 
stress accuracy in isolation without considering calibration or computational efficiency. Swarm-
based and evolutionary optimization methods have also been used for segmentation or the purpose 
of feature selection, but rarely in order to jointly optimize accuracy, reliability, and latency. Critical 
review of the above methods reveals that no prior studies incorporate multi-objective optimization 
by using Particle Swarm Optimization, especially for CNN-based multi-class brain tumor 
classification, nor include calibration error as an explicit target of optimization. Table 1 summarizes 

key representative studies and contrasts them against the capabilities required for trustworthy 
medical AI. 

Table 1: Overview of previous research regarding the prediction of Brain Tumor 
Author No. of 

Instances 
(Dataset) 

Feature 
Selection 

Parameter 
Tuning / 

Optimization 

Models Performance 
Metrics 

Result 

[9] 650 samples 
(DICOM) 

GLCM 
(Texture 
Features) 

- PNN Accuracy 95% 

[10] 4600 images 
(Kaggle) 

Automatic 
(CNN) 

Adam Optimizer MobileNetV2 Accuracy 88.77% 

[11] 5,712 images 
(Augmented to 

142,800) 

Automatic 
(Deep CNN) 

Data 
Augmentation 

Deep CNN Accuracy 91.5% 

[12] 3,064 MRI 
scans 

Automatic 
(YOLOv5 
Backbone) 

Batch: 64 
LR: 0.00261 

Standard 
YOLOv5 

Precision 81.9% 

     Recall 83% 
     mAP 87% 
  Automatic 

(YOLOv5 + 
NLNNs) 

Batch: 64 
LR: 0.00261 

Improved 
YOLOv5 

Precision 83.5% 

     Recall 86% 
     mAP 85.2% 

[13] 6,000 MRI 
scans 

Transfer 
Learning 

Adam optimizer 
LR: 0.001 

TTL Model Accuracy 94.5% 
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Batch: 32 
[14] 3,064 MRI 

scans 
Ensemble 
Features 

Epochs: 100 
Batch: 20 

Inception-v3 
Ensemble 

Accuracy 94.34% 

[15] 2,870 MRI 
scans 

GLCM + 
HOG + LBP 

- Fine KNN Accuracy 91.1% 

[16] 7,023 MRI 
scans 

Automatic 
(2D CNN) 

Adam optimizer  
LR: 0.001 
Batch: 32 

Three 
Layered 

CNN 

Accuracy 89.79% 

[17] - Automatic 
(CNN) 

Adam optimizer 
Dropout: 0.5 

LeNet 
Inspired 
Model 

Accuracy 88% 

[18] 3,064 MRI 
scans 

Fisher 
Vector (FV) 

Vocab size: 128 Fisher Vector mAP 94.68% 

[19] 3,264 MRI 
scans 

Automatic 
(Custom) 

Adam Optimizer 
Batch: 18 

Epochs: 80 

CNN Accuracy 93.30% 

[20] 7000 images, 
Tumor/No 

Tumor 

Transfer 
Learning 

Adam Optimizer, 
Dropout 

VGG-16 Accuracy 94.98% 

 Multiclass: 
Glioma, 

Meningioma, 
Pituitary 

Transfer 
Learning 

Adam Optimizer, 
Dropout 

VGG-16 Accuracy 89.19% 

3 Methods 
This study proposes a bio-inspired hyperparameter optimization framework based on Multi-
Objective Particle Swarm Optimization (MOPSO) to develop an efficient and trustworthy 

Convolutional Neural Network (CNN) for brain tumor classification. The framework is designed 
to simultaneously balance three conflicting objectives: maximizing classification accuracy, 
improving probability calibration to ensure reliable confidence estimates, and minimizing 
inference latency to support real-time clinical deployment. The overall workflow of the proposed 
method, including data preprocessing, hyperparameter optimization, model construction, and 
evaluation, is summarized in Figure 1. 
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Figure 1: Workflow of the Proposed MOPSO-Optimized CNN Model. 

3.1.	Dataset	and	Preprocessing	
The study employs the Brain Tumor MRI Dataset obtained from publicly accessible repositories 
(Masoud Nickparvar, Kaggle). The dataset comprises magnetic resonance imaging (MRI) scans 
that are categorized into four diagnostic classes: Glioma, Meningioma, Pituitary, and No Tumor. 
Prior to model training, several preprocessing procedures are applied to ensure uniformity and 
compatibility with the convolutional neural network (CNN) architecture. 

http://journals.cognispectra.com/index.php/aisa/index


Kafitra Marna Ibrahim & Zaky Zaujan Jayaputra 

119 
 

All MRI images are first resized to a fixed spatial dimension of 224 × 224 pixels to standardize 

the input size and support efficient batch processing. Subsequently, pixel intensity values are 

normalized using the mean (𝜇) and standard deviation (𝜎) parameters from the ImageNet dataset, 

a widely adopted normalization scheme for deep learning–based image classification models. This 
normalization aims to stabilize gradient updates and accelerate model convergence. The 

normalized pixel value 𝑥normis computed using: 

 
𝑥norm =

!"#
$

         (1) 
 
where 𝜇 = [0.485, 0.456, 0.406] and 𝜎 = [0.229, 0.224, 0.225]. 

3.2	Configurable	CNN	Architecture	

The proposed system is built upon a configurable convolutional neural network (CNN) 

architecture that enables flexible adjustment of hyperparameters during the optimization stage. 
The network is composed of three sequential convolutional blocks that progressively extract 
hierarchical feature representations from the input MRI scans. Each block integrates a two-

dimensional convolutional layer with a 3 × 3 kernel, followed by batch normalization to enhance 

training stability by mitigating internal covariate shift. A Rectified Linear Unit (ReLU) activation 
function is subsequently applied to introduce nonlinearity, while a max-pooling operation with a 

2 × 2 kernel performs spatial down-sampling to reduce computational complexity and emphasize 

the most salient features. 

After the feature extraction stage, the output tensor is transformed into a one-dimensional 
representation through a flattening operation. To improve model generalization and reduce 
overfitting, a dropout layer is incorporated, where the dropout rate is treated as a tunable parameter 
optimized using the Multi-Objective Particle Swarm Optimization (MOPSO) algorithm. The final 
classification is performed using a fully connected linear layer that maps the learned features to 
the corresponding tumor categories. 

3.3	Multi-Objective	Optimization	Strategy	

To identify the optimal set of hyperparameters, this study employs a Multi-Objective Particle 

Swarm Optimization (MOPSO) framework. Within this framework, each particle 𝑖in the swarm 

encodes a candidate hyperparameter vector 𝑥%, which may include parameters such as the learning 

rate, dropout rate, and the number of base convolutional channels. The swarm evolves iteratively, 

and at each iteration 𝑡, the position 𝑥%(𝑡) and velocity 𝑣%(𝑡) of each particle are updated following 

the standard Particle Swarm Optimization (PSO) formulation: 
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𝑣%(𝑡 + 1) = 𝑤 𝑣%(𝑡) + 𝑐&𝑟&(𝑝𝑏𝑒𝑠𝑡% − 𝑥%(𝑡)) + 𝑐'𝑟'(𝑔𝑏𝑒𝑠𝑡 − 𝑥%(𝑡))  (2) 
𝑥%(𝑡 + 1) = 𝑥%(𝑡) + 𝑣%(𝑡 + 1)       (3)  
 

where 𝑤denotes the inertia weight, 𝑐& and 𝑐' are the cognitive and social acceleration 

coefficients, respectively, and 𝑟& and 𝑟' represent random vectors uniformly sampled from the 

interval [0,1]. Throughout the optimization process, all non-dominated solutions are archived 

in an external Pareto Repository, which functions as the global guide for the swarm and ensures 

adequate coverage of the Pareto front. 
The optimization simultaneously minimizes three objective functions, each representing a 
distinct performance aspect of the CNN model. Unlike standard MOPSO implementations that 
typically focus solely on error rates, our framework modifies the fitness evaluation step to 
explicitly include Expected Calibration Error (ECE) as a critical minimization objective 
(Equation 5). This modification forces the swarm to navigate towards solutions that are not only 
accurate but also probabilistically reliable. The first objective is the validation error, expressed 
as: 

 
𝑓& = 1 − Accuracyval        (4)  

 
which encourages the model to achieve high predictive accuracy on unseen validation samples. 
The second objective aims to improve probabilistic reliability by minimizing the Expected 

Calibration Error (ECE). Model outputs are partitioned into 𝑀confidence bins, and calibration 

quality is assessed by comparing the accuracy and mean confidence of each bin. The ECE is 
defined as: 

 

𝑓' = ECE =D ∣)!∣
*
∣ acc(𝐵+) − conf(𝐵+) ∣

,

+-&
    (5) 

 
where ∣ 𝐵+ ∣ denotes the number of samples in bin 𝑚, 𝑁 is the total number of samples, acc(𝐵+) 

is the empirical accuracy of the bin, and conf(𝐵+) is its average predicted confidence. 

Minimizing this objective enhances the trustworthiness of the model’s confidence estimates, 
which is crucial for medical decision support applications. 

The third objective addresses computational performance by measuring inference latency, 
defined as the average time required to process an individual MRI input during evaluation. 
Latency is computed as: 

 

𝑓. =
&
/
D (𝑡end

(1) − 𝑡start
(1) )

/

1-&
       (6)  
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where 𝐾 represents the number of batches used for latency profiling, and 𝑡start

(1)  and 𝑡end
(1) 

correspond to the timestamps recorded before and after the forward pass of batch 𝑘. This 

objective ensures that the optimized model remains suitable for real-time or near real-time 
clinical deployment. 
To support the MOPSO optimization process, the search space of tunable hyperparameters is 
summarized in Table 2. 

Table 2: Hyperparameter Search Space 
Hyperparameter Type Range / 

Values 
Description 

Learning Rate Continuous 10!" − 10!# Controls the step size of weight updates. 
Dropout Rate Continuous 0.0 − 0.5 Prevents overfitting by randomly deactivating neurons. 

Base 
Channels 

Integer 16 − 64 Determines the number of filters in the initial convolutional 
layer. 

Batch Size Discrete {8,16,32,64} Number of samples processed per iteration. 

3.4	Experimental	Setup	

All experiments were carried out in the Google Colab environment equipped with an NVIDIA T4 GPU, 

providing the computational resources necessary for training and evaluating the proposed model. The 

implementation was developed using Python 3 and the PyTorch deep learning framework, which offers 

efficient tensor operations and flexible model customization suitable for the optimization workflow. 

The final CNN configuration corresponds to the set of hyperparameters selected from the Pareto-

optimal solutions obtained through the MOPSO process. Model training employs the Adam optimizer 

to adaptively adjust learning rates during gradient-based updates and utilizes the Cross-Entropy Loss 

function as the objective for multi-class tumor classification. This setup ensures that the learning process 

is both stable and aligned with the hyperparameter values determined through multi-objective 

optimization. 

4 Results and Discussion 

4.1.	Multi-Objective	Optimization	Dynamics	
The proposed Multi-Objective Particle Swarm Optimization (MOPSO) framework was employed 
to navigate the complex hyperparameter search space defined in Chapter 3. Over the course of ten 
optimization iterations, the swarm systematically explored the trade-offs among the three 

conflicting objectives: Validation Error (𝑓&), Expected Calibration Error (𝑓'), and Inference 

Latency (𝑓.). The optimization logs demonstrate a clear progression in swarm dynamics 

throughout the search process. 
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During the early stage of optimization (iterations 1 to 3), particle performance exhibited 
substantial variance, indicating a strong exploratory behavior. Validation errors during this phase 
ranged from 29.8 percent down to 14.4 percent, while calibration errors frequently exceeded 10 
percent. This period reflects the swarm’s initial investigation of diverse regions of the 
hyperparameter space, which is typical of the exploratory phase where the algorithm probes 
broadly before moving toward more promising areas. 
By iteration 6, the swarm began to converge as particles clustered around competitive solution 

regions. At this stage, the optimization process identified potential Pareto-optimal configurations 
that balanced model complexity, predictive accuracy, and computational efficiency. This 
transition marked the shift from exploration to exploitation and signaled a more refined search 
toward optimal decision boundaries. 
The final Pareto front presented several non-dominated solutions that illustrated the inherent 
trade-offs among the three objectives. Certain configurations favored accuracy and achieved 
validation errors of approximately 12.2 percent, but these models exhibited higher inference 
latency, often exceeding 1.2 milliseconds per sample, which is typical for architectures with larger 

convolutional channel depths. In contrast, solutions optimized for computational efficiency 
achieved extremely low latency, around 0.28 milliseconds per sample, particularly those with 
lightweight architectures such as 16 base channels. However, these configurations tended to 
produce higher validation errors above 17 percent. Between these extremes, the optimization 
uncovered a distinct knee region of the Pareto front representing a balanced compromise among 
accuracy, calibration, and latency. 

 

Figure 2: Pareto Front: Validation Error vs Expected Calibration Error (ECE). 

Figure 2 illustrates the trade-off between Validation Error and ECE. As shown, points located 
toward the lower-left region of the plot represent more desirable configurations, whereas points 
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on the upper-right reflect inferior trade-offs. The spread of solutions confirms the conflicting 
nature of error minimization and calibration reliability. 

 

Figure 3: Pareto Front: Three-Dimensional Pareto Front of Validation Error, ECE, and 
Inference Latency. 

A broader perspective on the optimization landscape is provided by the three-dimensional Pareto 

Front (Figure 3), in which Latency is incorporated as the third axis. This visualization highlights 
how the swarm discovers diverse solution clusters and clarifies the relative position of the knee 
region. It also shows that extremely low latency solutions tend to correspond with higher error 
values, while highly accurate configurations tend to incur additional computational cost. 

 
Figure 4. Radar Chart of the Best Compromise Solution. 

 

To illustrate why the chosen model configuration represents the best compromise, a Radar Chart 
of the Best Compromise Solution (Figure 4) is provided. The radar plot displays the relative 
magnitudes of the three objectives for the selected model. The balanced shape of the polygon 
confirms that this configuration avoids extreme values in any objective dimension, making it 
suitable for real-time and high-reliability medical deployment. 
The Best Compromise Solution selected from the Pareto knee region employed a learning rate of 

3.49 × 10"3, a dropout rate of 0.394, 32 base channels, and a batch size of 16. This configuration 
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produced a validation error of 14.0 percent and an Expected Calibration Error of 4.1 percent 
during the optimization phase, while maintaining an efficient inference latency of 0.88 
milliseconds per sample. These results demonstrate the effectiveness of MOPSO in identifying 
high-quality hyperparameter configurations that reconcile the competing demands of predictive 
performance, reliability, and computational speed. 

4.2.	Diagnostic	Performance	Analysis	

Following the optimization phase, the final CNN model was retrained using the optimal 
hyperparameters obtained from the MOPSO procedure. The model was then evaluated on the 

held-out test set consisting of 1,311 MRI scans. Quantitative results indicate that the optimized 
model achieved a Test Accuracy of 95 percent, demonstrating strong overall predictive capability 
across the four tumor categories. 
Class-wise performance metrics are summarized in Table 3. The model exhibited consistently 
high precision, recall, and F1-Score across all classes, reflecting reliable discriminative behavior. 
In particular, the model achieved an F1-Score of 0.99 for both Pituitary tumors and No Tumor 
cases. The strong performance on the No Tumor category is clinically meaningful because it 

reduces the likelihood of false positives, which are particularly undesirable in diagnostic 
screening scenarios. 

Table 3: Classification Report of the Optimized Model 

Class Precision Recall F1-Score Support 

Glioma 91% 93% 92% 300 
Meningioma 92% 87% 89% 306 

No Tumor 97% 100% 99% 405 

Pituitary 99% 99% 99% 300 

Overall 95% 95% 95% 1311 
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Figure 5: Confussion Matrix. 

The confusion matrix, illustrated in Figure 5, provides further insight into model behavior. The 
most notable source of error occurs within the Meningioma category, which recorded a recall of 

0.87. A portion of Meningioma samples was misclassified as Glioma. This pattern of 
misclassification aligns with established radiological challenges, as both tumor types can appear 
visually similar, particularly when presenting as extra-axial masses with enhancing margins in 
specific MRI sequences. 
Despite this challenge, the confusion matrix maintains strong diagonal dominance, indicating that 
the classifier generalizes well across categories. The relatively small number of off-diagonal 
entries further supports the robustness of the optimized model in distinguishing between brain 
tumor types in diverse imaging conditions. 

4.3.	Reliability	and	Calibration	Assessment	

A critical objective of this study was to ensure that the confidence scores produced by the model 
accurately reflect the true likelihood of correct classification. Standard deep learning classifiers 
are known to exhibit overconfidence, which can lead to misleading uncertainty estimates in 

clinical decision making. By incorporating the calibration-aware objective function 𝑓', the 

optimization process effectively reduced the mismatch between predicted confidence and 
empirical accuracy. 
The final evaluation produced a Test Expected Calibration Error (ECE) of 0.0148, or 1.48 percent. 
This low ECE value indicates that when the model assigns a confidence of 90 percent to a 
prediction, the prediction is correct approximately 90 percent of the time. The Reliability Diagram 
(Calibration Curve) presented in Figure 6 further supports this finding. The plotted curve closely 

aligns with the ideal diagonal line 𝑦 = 𝑥, signifying that the model maintains consistent alignment 

between confidence and actual predictive performance. 
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Figure 6: Calibration Curve. 

This level of reliability is essential for the development of trustworthy artificial intelligence 

systems in healthcare. A well-calibrated model enables clinicians and radiologists to interpret the 
model’s confidence estimates with greater assurance, particularly in scenarios where uncertainty 
plays a critical role in diagnostic decisions. As a result, the proposed calibration-aware 
optimization strategy contributes directly to the model’s suitability for real-world diagnostic 
support applications. 

4.4.	Model	Interpretability	(Grad-CAM)	

To validate the decision-making process of the CNN, Gradient-weighted Class Activation 
Mapping (Grad-CAM) was employed. This technique provides a visual explanation by 

highlighting the spatial regions that contribute most to the model’s predictions. As illustrated in 
Figure 4, the Grad-CAM heatmaps for correctly classified samples demonstrate that the model 
consistently directs its attention toward the hyperintense tumor regions within the brain 
parenchyma. These regions correspond to the pathological areas that radiologists typically 
examine during clinical assessment. 

 

Figure 7: Grad-CAM. 
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The interpretability results further show that the model effectively disregards irrelevant structures 
such as background noise and cranial bone features, indicating that its predictions are driven by 
meaningful and disease-relevant patterns rather than spurious artifacts. This qualitative evidence 
supports the claim that the model satisfies the explainability requirements necessary for safe and 
trustworthy medical AI applications. 

4.5.	Computational	Efficiency	

Beyond accuracy, calibration, and interpretability, computational performance was an essential 
optimization objective in this study. The MOPSO framework successfully identified a model 
configuration that delivers high predictive capability while maintaining low inference latency. 

The selected architecture operates with an average inference latency of 0.88 × 10".seconds per 

sample, which corresponds to less than one millisecond on the test hardware. 
This sub-millisecond inference time indicates that the model can process more than 1,000 MRI 
slices per second. Such computational efficiency is critical for real-time or near real-time 
deployment in clinical workflows. The model’s speed allows it to be integrated seamlessly into 
Picture Archiving and Communication Systems (PACS) without introducing delays, ensuring that 
diagnostic pipelines remain efficient and responsive. The combination of rapid inference and high 

diagnostic accuracy enhances the practicality of the system for clinical use, particularly in high-
throughput environments. 

4.6.	Comparative	Performance	Against	Previous	Studies	

The performance of the proposed MOPSO-optimized CNN model demonstrates significant 
improvements when compared with prior brain tumor MRI classification studies. After 
undergoing multi-objective optimization, the final model achieved a test accuracy of 95 percent, 
placing it among the highest performing deep learning approaches in this domain. Beyond 
accuracy, the model also achieved an Expected Calibration Error of 1.48 percent and a sub-

millisecond inference latency, providing a balanced combination of accuracy, reliability, and 
computational efficiency that earlier works seldom addressed simultaneously. 
Previous studies in brain tumor classification reported a wide range of accuracy results depending 
on feature extraction techniques, model architectures, and dataset sizes. Traditional approaches 
that relied on handcrafted features, such as GLCM combined with Probabilistic Neural Networks, 
attained an accuracy of 95 percent on relatively small datasets consisting of 650 DICOM samples 
[9]. Deep learning methods trained on larger MRI collections generally achieved moderate 

improvements, such as 88.77 percent accuracy using MobileNetV2 [10], 91.5 percent using 
augmented Deep CNN models [11], and 93.30 percent using custom CNN architectures [19]. 
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Object detection based approaches like YOLOv5 have been evaluated using precision, recall, and 
mAP metrics rather than pure accuracy scores. These models achieved precision and recall values 
between 81 and 86 percent, with mAP values ranging from 85 to 87 percent, illustrating strong 
localization performance but leaving room for improvement in classification tasks [12]. Transfer 
learning techniques also contributed notable performance gains, including a TTL-based model 
reaching 94.5 percent accuracy [13] and VGG-16 achieving up to 94.98 percent in binary 
classification and 89.19 percent in multiclass settings [20]. 

Compared with these studies, the proposed model demonstrates competitive, and in many cases 
superior, classification performance while simultaneously enhancing model calibration and 
inference speed. These improvements stem from the use of a multi-objective optimization 
strategy, which tunes hyperparameters not only for accuracy but also for reliability and 
computational efficiency. Consequently, the model is better aligned with clinical deployment 
requirements, where both trustworthiness and real-time performance are essential. 

Table 4: Comparison of the Proposed Model and Previous Studies 
Author Dataset Size Method Metric Result 

[9] 650 DICOM PNN + GLCM Accuracy 95% 
[10] 4600 images MobileNetV2 Accuracy 88.77% 
[11] 5712 images 

(augmented 142k) 
Deep CNN Accuracy 91.5% 

[12] 3064 MRI scans YOLOv5 Precision  81.9% 
   Recall  83% 
   mAP 87% 
  YOLOv5 + NLNNs Precision  83.5% 
   Recall 86% 
   mAP 85.2% 

[13] 6000 scans TTL Transfer 
Learning 

Accuracy 94.5% 

[14] 3064 scans Inception-v3 
Ensemble 

Accuracy 94.34% 

[15] 
 

2870 scans GLCM + HOG + 
LBP (KNN) 

Accuracy 91.1% 

[16] 7023 scans Three-Layer CNN Accuracy 89.79% 
[17] - LeNet-based CNN Accuracy 88% 
[18] 3064 scans Fisher Vector mAP 94.68% 
[19] 3264 scans Custom CNN Accuracy 93.30% 
[20] 7000 scans VGG-16 (binary) Accuracy 94.98% 

 Multiclass VGG-16 Accuracy 89.19% 
Proposed 
Method 

1311 scans (test 
set) 

MOPSO-Optimized 
CNN 

Accuracy 95% 

   ECE 1.48% 
   Latency 0.88 ms 

5  Conclusion  

This study presented a Multi-Objective Particle Swarm Optimization (MOPSO)-driven framework for 

optimizing a Convolutional Neural Network (CNN) applied to brain tumor classification using MRI 

scans. By simultaneously optimizing validation error, calibration reliability, and inference latency, the 
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proposed approach offers a comprehensive performance improvement that addresses practical demands 

in clinical diagnostics. The resulting model achieved high predictive accuracy combined with 

exceptionally low calibration error and sub-millisecond inference latency, demonstrating its suitability 

for real-time deployment. 

One of the key contributions of this work lies in incorporating calibration awareness into the 

optimization process, enabling the model to produce probability estimates that accurately reflect 

predictive correctness. Additionally, the integration of latency as an optimization objective ensures 

efficient computational performance, which is often overlooked in deep learning studies for medical 

imaging. The Grad-CAM interpretability analysis further validated that model predictions are guided by 

clinically relevant tumor regions, enhancing trustworthiness and transparency. 

Comparison with existing literature shows that the proposed method matches or exceeds the 

performance of state-of-the-art CNN and transfer learning models while additionally offering improved 

calibration and computational efficiency. These advancements make the model highly promising for 

integration into clinical workflows, such as real-time screening systems or PACS-based diagnostic 

support tools. 

Despite these strengths, several areas remain open for exploration. Future research may include 

extending the model to multi-modal MRI scans (such as T1, T2, and FLAIR), incorporating volumetric 

3D CNN architectures, or integrating hybrid optimization techniques such as NSGA-II or MOEA/D for 

broader performance comparison. The incorporation of uncertainty quantification techniques, beyond 

ECE, could further support its clinical adoption in high-risk decision-making environments. 

While the proposed model demonstrates strong performance on the evaluated dataset, the limitation of 

external validity inherent in single-dataset studies is acknowledged. Variations in MRI acquisition 

parameters and scanner types across different medical centers may affect model generalizability. 

Therefore, future research will prioritize validating this framework on multi-center datasets to ensure 

robustness across diverse clinical environments. 

Overall, the proposed MOPSO-optimized CNN presents a strong foundation for reliable, efficient, and 

interpretable medical image classification, contributing valuable advancements to the development of 

trustworthy artificial intelligence in healthcare. 
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