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Abstract: Automated brain tumor classification from magnetic resonance tmaging (MRI) has become A
an essential component in advancing computer-atded diagnosts However, many deep learning
approaches prioritize accuracy alone while overlooking two key requirements for real-world medical
deployment the reliability of predicted confidence scores and the computational efficiency required
for clinical 1ntegratton This study proposes a multi-objective bio-inspired hyperparameter
optimization framework to produce convolutional neural network (CNN) models that are accurate,
well-calibrated, and computationally efficient The model 1s optimized using a Multi-Objective Particle
Swarm Optimization (MOPSO) algorithm that jointly munimuzes valigation error, Fxpectea Calibration
Error (FECF), and inference latency Fxperiments were conducted on a four-class Brain Tumor MRI
dataset, and the optimized configuration achieved a test accuracy of 95 percent, an FCF of 1 48 percent,
and a sub-mullisecona 1nference latency of 0 88 mulliseconds per sample. Grad-CAM visualizations
further confirm that the model’s decistons are gutded by clinically relevant tumor regrons The results
demonstrate that multi-objective hyperparameter optimuzation offers a robust pathway for developing
trustworthy, efficient, and 1nterpretable artificial intelligence systems for medical imaging applications
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1 Introduction

Among neurological disorders, brain tumors are among the most life-threatening, and their early
diagnosis is critical to improve treatment outcomes. Because of its excellent spatial and tissue-
contrast resolution, MRI remains the most commonly used non-invasive modality for the
identification of tumor type, extent, and progression [1]. More recently, deep learning has
achieved impressive success in automating the classification of brain tumors, thus having the
potential to alleviate the workload of radiologists while improving diagnostic consistency [2, 3].
Despite this progress, several challenges remain, which severely limit the clinical adoption of deep
learning models in medical imaging.

Most of the existing works focus on maximizing classification accuracy while usually ignoring
the requirements necessary for real deployment, such as model calibration, reliability of
confidence estimates, and computational efficiency. Poor calibration can lead to overconfident yet
incorrect predictions, which is not acceptable in safety-critical settings such as tumor diagnosis
[4]. Furthermore, many state-of-the-art models are built using highly complex architectures with
very costly computation and therefore could not be used in any time-sensitive clinical workflows
or resource-limited devices [5]. The above-mentioned limits emphasize the necessity for
optimization in a holistic manner where predictive performance needs to be balanced together
with reliability and inference efficiency.

Bio-inspired optimization methods, particularly swarm intelligence approaches such as Particle
Swarm Optimization (PSO), have shown strong capability in navigating high-dimensional, non-
convex search spaces and are increasingly used in neural architecture and hyperparameter
optimization [6-8]. However, prior works often optimize a single objective typically accuracy
while ignoring competing goals such as calibration and latency. Such single-objective
formulations cannot fully address the multi-faceted requirements of trustworthy medical artificial
intelligence.

This study proposes a multi-objective bio-inspired hyperparameter optimization framework to
improve the performance and trustworthiness of convolutional neural networks for the
classification of brain tumors in MRI images. The proposed approach jointly minimizes a
calibration-aware objective structure involving classification error, expected calibration error, and
inference latency to ensure both the accuracy and trustworthiness of the model. A customized
Multi-Objective Particle Swarm Optimization mechanism is proposed to navigate the search space
effectively and determine Pareto-optimal hyperparameter configurations. The compactness of the
underlying CNN architecture allows structural flexibility and computational efficiency while
maintaining its discriminative capability. The performance of the proposed framework is
evaluated on a comprehensive set of experiments involving accuracy assessment, calibration

analysis, latency measurement, and Grad-CAM interpretability. Experimental results evidence
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that the optimized model yields strong diagnostic performance with improved probability
calibration and fast inference, which positions the model effectively for practical deployment in
medical imaging. Overall, this work contributes to a robust pathway for developing dependable,

clinically applicable artificial intelligence systems.
2 Related Work

Brain tumor classification from MRI has been widely explored across various methodological
families, including classical machine learning, deep learning architectures, and bio-inspired
optimization methods. Early approaches relied on handcrafted features and conventional classifiers,
reaching reasonable accuracy but lacking scalability and robustness. More recent works employ
CNN-based models or rely on transfer learning in order to improve feature representation, but most
stress accuracy in isolation without considering calibration or computational efficiency. Swarm-
based and evolutionary optimization methods have also been used for segmentation or the purpose
of feature selection, but rarely in order to jointly optimize accuracy, reliability, and latency. Critical
review of the above methods reveals that no prior studies incorporate multi-objective optimization
by using Particle Swarm Optimization, especially for CNN-based multi-class brain tumor
classification, nor include calibration error as an explicit target of optimization. Table 1 summarizes
key representative studies and contrasts them against the capabilities required for trustworthy
medical Al

Table 1: Overview of previous research regarding the prediction of Brain Tumor

Author No. of Feature Parameter Models Performance Result
Instances Selection Tuning / Metrics
(Dataset) Optimization
[9] 650 samples GLCM - PNN Accuracy 95%
(DICOM) (Texture
Features)
[10] 4600 images Automatic Adam Optimizer MobileNetV2 Accuracy 88.77%
(Kaggle) (CNN)
[11] 5,712 images Automatic Data Deep CNN Accuracy 91.5%
(Augmented to  (Deep CNN) Augmentation
142,800)
[12] 3,064 MRI Automatic Batch: 64 Standard Precision 81.9%
scans (YOLOVS5 LR: 0.00261 YOLOvVS
Backbone)
Recall 83%
mAP 87%
Automatic Batch: 64 Improved Precision 83.5%
(YOLOVS + LR: 0.00261 YOLOVS
NLNNs)
Recall 86%
mAP 85.2%
[13] 6,000 MRI Transfer Adam optimizer TTL Model Accuracy 94.5%
scans Learning LR: 0.001

116


http://journals.cognispectra.com/index.php/aisa/index

Kafitra Marna Ibrahim & Zaky Zaujan Jayaputra

Batch: 32
[14] 3,064 MRI Ensemble Epochs: 100 Inception-v3 Accuracy 94.34%
scans Features Batch: 20 Ensemble
[15] 2,870 MRI GLCM + - Fine KNN Accuracy 91.1%
scans HOG + LBP
[16] 7,023 MRI Automatic Adam optimizer Three Accuracy 89.79%
scans (2D CNN) LR: 0.001 Layered
Batch: 32 CNN
[17] - Automatic Adam optimizer LeNet Accuracy 88%
(CNN) Dropout: 0.5 Inspired
Model
[18] 3,064 MRI Fisher Vocab size: 128  Fisher Vector mAP 94.68%
scans Vector (FV)
[19] 3,264 MRI Automatic Adam Optimizer CNN Accuracy 93.30%
scans (Custom) Batch: 18
Epochs: 80
[20] 7000 images, Transfer Adam Optimizer, VGG-16 Accuracy 94.98%
Tumor/No Learning Dropout
Tumor
Multiclass: Transfer Adam Optimizer, VGG-16 Accuracy 89.19%
Glioma, Learning Dropout
Meningioma,
Pituitary
3 Methods

This study proposes a bio-inspired hyperparameter optimization framework based on Multi-

Objective Particle Swarm Optimization (MOPSO) to develop an efficient and trustworthy

Convolutional Neural Network (CNN) for brain tumor classification. The framework is designed

to simultaneously balance three conflicting objectives: maximizing classification accuracy,

improving probability calibration to ensure reliable confidence estimates, and minimizing

inference latency to support real-time clinical deployment. The overall workflow of the proposed

method, including data preprocessing, hyperparameter optimization, model construction, and

evaluation, is summarized in Figure 1.
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Figure 1: Workflow of the Proposed MOPSO-Optimized CNN Model.

3.1. Dataset and Preprocessing

The study employs the Brain Tumor MRI Dataset obtained from publicly accessible repositories
(Masoud Nickparvar, Kaggle). The dataset comprises magnetic resonance imaging (MRI) scans
that are categorized into four diagnostic classes: Glioma, Meningioma, Pituitary, and No Tumor.
Prior to model training, several preprocessing procedures are applied to ensure uniformity and

compatibility with the convolutional neural network (CNN) architecture.
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All MRI images are first resized to a fixed spatial dimension of 224 X 224 pixels to standardize
the input size and support efficient batch processing. Subsequently, pixel intensity values are
normalized using the mean (@) and standard deviation (o) parameters from the ImageNet dataset,
a widely adopted normalization scheme for deep learning—based image classification models. This
normalization aims to stabilize gradient updates and accelerate model convergence. The

normalized pixel value x,,,,1s computed using:

Xnorm = —— (1)
where p = [0.485, 0.456, 0.406] and o = [0.229, 0.224, 0.225].

3.2 Configurable CNN Architecture

The proposed system is built upon a configurable convolutional neural network (CNN)
architecture that enables flexible adjustment of hyperparameters during the optimization stage.
The network is composed of three sequential convolutional blocks that progressively extract
hierarchical feature representations from the input MRI scans. Each block integrates a two-
dimensional convolutional layer with a 3 X 3 kernel, followed by batch normalization to enhance
training stability by mitigating internal covariate shift. A Rectified Linear Unit (ReLU) activation
function is subsequently applied to introduce nonlinearity, while a max-pooling operation with a
2 X 2 kernel performs spatial down-sampling to reduce computational complexity and emphasize
the most salient features.

After the feature extraction stage, the output tensor is transformed into a one-dimensional
representation through a flattening operation. To improve model generalization and reduce
overfitting, a dropout layer is incorporated, where the dropout rate is treated as a tunable parameter
optimized using the Multi-Objective Particle Swarm Optimization (MOPSO) algorithm. The final
classification is performed using a fully connected linear layer that maps the learned features to

the corresponding tumor categories.

3.3 Multi-Objective Optimization Strategy

To identify the optimal set of hyperparameters, this study employs a Multi-Objective Particle
Swarm Optimization (MOPSO) framework. Within this framework, each particle iin the swarm
encodes a candidate hyperparameter vector x;, which may include parameters such as the learning
rate, dropout rate, and the number of base convolutional channels. The swarm evolves iteratively,
and at each iteration t, the position x;(t) and velocity v;(t) of each particle are updated following

the standard Particle Swarm Optimization (PSO) formulation:
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vi(t+1) =wv;(t) + ciry(pbest; — x;(t)) + carz(gbest — x;(t)) 2)
xi(t + 1) = xi(t) + Ul'(t + 1) (3)

where wdenotes the inertia weight, ¢; and c, are the cognitive and social acceleration
coefficients, respectively, and r; and 7, represent random vectors uniformly sampled from the
interval [0,1]. Throughout the optimization process, all non-dominated solutions are archived
in an external Pareto Repository, which functions as the global guide for the swarm and ensures
adequate coverage of the Pareto front.

The optimization simultaneously minimizes three objective functions, each representing a
distinct performance aspect of the CNN model. Unlike standard MOPSO implementations that
typically focus solely on error rates, our framework modifies the fitness evaluation step to
explicitly include Expected Calibration Error (ECE) as a critical minimization objective
(Equation 5). This modification forces the swarm to navigate towards solutions that are not only
accurate but also probabilistically reliable. The first objective is the validation error, expressed

as:

f1 =1 — Accuracy_, 4)

which encourages the model to achieve high predictive accuracy on unseen validation samples.
The second objective aims to improve probabilistic reliability by minimizing the Expected

Calibration Error (ECE). Model outputs are partitioned into Mconfidence bins, and calibration
quality is assessed by comparing the accuracy and mean confidence of each bin. The ECE is

defined as:

f» =ECE = ZM:1I€V—"1I | acc(B,,) — conf(B,y,) | (%)

where | B, | denotes the number of samples in bin m, N is the total number of samples, acc(By,)
is the empirical accuracy of the bin, and conf(B,,) is its average predicted confidence.
Minimizing this objective enhances the trustworthiness of the model’s confidence estimates,
which is crucial for medical decision support applications.

The third objective addresses computational performance by measuring inference latency,
defined as the average time required to process an individual MRI input during evaluation.

Latency is computed as:

K
_1 (k) (k)
f3 - ;Zk_l(tend — Lytart (6)
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where K represents the number of batches used for latency profiling, and ts(tgt and tgﬁ

correspond to the timestamps recorded before and after the forward pass of batch k. This
objective ensures that the optimized model remains suitable for real-time or near real-time
clinical deployment.

To support the MOPSO optimization process, the search space of tunable hyperparameters is
summarized in Table 2.

Table 2: Hyperparameter Search Space

Hyperparameter Type Range / Description
Values
Learning Rate  Continuous 1075 — 1072  Controls the step size of weight updates.
Dropout Rate Continuous 0.0-0.5 Prevents overfitting by randomly deactivating neurons.
Base Integer 16 — 64 Determines the number of filters in the initial convolutional
Channels layer.
Batch Size Discrete {8,16,32,64}  Number of samples processed per iteration.

3.4 Experimental Setup

All experiments were carried out in the Google Colab environment equipped with an NVIDIA T4 GPU,
providing the computational resources necessary for training and evaluating the proposed model. The
implementation was developed using Python 3 and the PyTorch deep learning framework, which offers
efficient tensor operations and flexible model customization suitable for the optimization workflow.
The final CNN configuration corresponds to the set of hyperparameters selected from the Pareto-
optimal solutions obtained through the MOPSO process. Model training employs the Adam optimizer
to adaptively adjust learning rates during gradient-based updates and utilizes the Cross-Entropy Loss
function as the objective for multi-class tumor classification. This setup ensures that the learning process
is both stable and aligned with the hyperparameter values determined through multi-objective

optimization.

4 Results and Discussion

4.1. Multi-Objective Optimization Dynamics

The proposed Multi-Objective Particle Swarm Optimization (MOPSO) framework was employed
to navigate the complex hyperparameter search space defined in Chapter 3. Over the course of ten
optimization iterations, the swarm systematically explored the trade-offs among the three
conflicting objectives: Validation Error (f;), Expected Calibration Error (f;), and Inference
Latency (f3). The optimization logs demonstrate a clear progression in swarm dynamics

throughout the search process.
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During the early stage of optimization (iterations 1 to 3), particle performance exhibited
substantial variance, indicating a strong exploratory behavior. Validation errors during this phase
ranged from 29.8 percent down to 14.4 percent, while calibration errors frequently exceeded 10
percent. This period reflects the swarm’s initial investigation of diverse regions of the
hyperparameter space, which is typical of the exploratory phase where the algorithm probes
broadly before moving toward more promising areas.

By iteration 6, the swarm began to converge as particles clustered around competitive solution
regions. At this stage, the optimization process identified potential Pareto-optimal configurations
that balanced model complexity, predictive accuracy, and computational efficiency. This
transition marked the shift from exploration to exploitation and signaled a more refined search
toward optimal decision boundaries.

The final Pareto front presented several non-dominated solutions that illustrated the inherent
trade-offs among the three objectives. Certain configurations favored accuracy and achieved
validation errors of approximately 12.2 percent, but these models exhibited higher inference
latency, often exceeding 1.2 milliseconds per sample, which is typical for architectures with larger
convolutional channel depths. In contrast, solutions optimized for computational efficiency
achieved extremely low latency, around 0.28 milliseconds per sample, particularly those with
lightweight architectures such as 16 base channels. However, these configurations tended to
produce higher validation errors above 17 percent. Between these extremes, the optimization
uncovered a distinct knee region of the Pareto front representing a balanced compromise among

accuracy, calibration, and latency.

Pareto Front: Error vs ECE
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Figure 2: Pareto Front: Validation Error vs Expected Calibration Error (ECE).

Figure 2 illustrates the trade-off between Validation Error and ECE. As shown, points located

toward the lower-left region of the plot represent more desirable configurations, whereas points
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on the upper-right reflect inferior trade-offs. The spread of solutions confirms the conflicting

nature of error minimization and calibration reliability.

3D Pareto Front

Figure 3: Pareto Front: Three-Dimensional Pareto Front of Validation Error, ECE, and

Inference Latency.

A broader perspective on the optimization landscape is provided by the three-dimensional Pareto
Front (Figure 3), in which Latency is incorporated as the third axis. This visualization highlights
how the swarm discovers diverse solution clusters and clarifies the relative position of the knee
region. It also shows that extremely low latency solutions tend to correspond with higher error

values, while highly accurate configurations tend to incur additional computational cost.

Radar Chart - Best Compromise Solution

Figure 4. Radar Chart of the Best Compromise Solution.

To illustrate why the chosen model configuration represents the best compromise, a Radar Chart
of the Best Compromise Solution (Figure 4) is provided. The radar plot displays the relative
magnitudes of the three objectives for the selected model. The balanced shape of the polygon
confirms that this configuration avoids extreme values in any objective dimension, making it
suitable for real-time and high-reliability medical deployment.

The Best Compromise Solution selected from the Pareto knee region employed a learning rate of

3.49 x 10~>, a dropout rate of 0.394, 32 base channels, and a batch size of 16. This configuration
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produced a validation error of 14.0 percent and an Expected Calibration Error of 4.1 percent
during the optimization phase, while maintaining an efficient inference latency of 0.88
milliseconds per sample. These results demonstrate the effectiveness of MOPSO in identifying
high-quality hyperparameter configurations that reconcile the competing demands of predictive

performance, reliability, and computational speed.

4.2. Diagnostic Performance Analysis

Following the optimization phase, the final CNN model was retrained using the optimal
hyperparameters obtained from the MOPSO procedure. The model was then evaluated on the
held-out test set consisting of 1,311 MRI scans. Quantitative results indicate that the optimized
model achieved a Test Accuracy of 95 percent, demonstrating strong overall predictive capability
across the four tumor categories.

Class-wise performance metrics are summarized in Table 3. The model exhibited consistently
high precision, recall, and F1-Score across all classes, reflecting reliable discriminative behavior.
In particular, the model achieved an F1-Score of 0.99 for both Pituitary tumors and No Tumor
cases. The strong performance on the No Tumor category is clinically meaningful because it
reduces the likelihood of false positives, which are particularly undesirable in diagnostic

screening scenarios.

Table 3: Classification Report of the Optimized Model

Class Precision Recall F1-Score Support
Glioma 91% 93% 92% 300
Meningioma 92% 87% 89% 306
No Tumor 97% 100% 99% 405
Pituitary 99% 99% 99% 300
Overall 95% 95% 95% 1311
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Figure 5: Confussion Matrix.

The confusion matrix, illustrated in Figure 5, provides further insight into model behavior. The
most notable source of error occurs within the Meningioma category, which recorded a recall of
0.87. A portion of Meningioma samples was misclassified as Glioma. This pattern of
misclassification aligns with established radiological challenges, as both tumor types can appear
visually similar, particularly when presenting as extra-axial masses with enhancing margins in
specific MRI sequences.

Despite this challenge, the confusion matrix maintains strong diagonal dominance, indicating that
the classifier generalizes well across categories. The relatively small number of off-diagonal
entries further supports the robustness of the optimized model in distinguishing between brain

tumor types in diverse imaging conditions.

4.3. Reliability and Calibration Assessment

A critical objective of this study was to ensure that the confidence scores produced by the model
accurately reflect the true likelihood of correct classification. Standard deep learning classifiers
are known to exhibit overconfidence, which can lead to misleading uncertainty estimates in
clinical decision making. By incorporating the calibration-aware objective function f,, the
optimization process effectively reduced the mismatch between predicted confidence and
empirical accuracy.

The final evaluation produced a Test Expected Calibration Error (ECE) 0of 0.0148, or 1.48 percent.
This low ECE value indicates that when the model assigns a confidence of 90 percent to a
prediction, the prediction is correct approximately 90 percent of the time. The Reliability Diagram
(Calibration Curve) presented in Figure 6 further supports this finding. The plotted curve closely
aligns with the ideal diagonal line y = x, signifying that the model maintains consistent alignment

between confidence and actual predictive performance.
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Figure 6: Calibration Curve.

This level of reliability is essential for the development of trustworthy artificial intelligence
systems in healthcare. A well-calibrated model enables clinicians and radiologists to interpret the
model’s confidence estimates with greater assurance, particularly in scenarios where uncertainty
plays a critical role in diagnostic decisions. As a result, the proposed calibration-aware
optimization strategy contributes directly to the model’s suitability for real-world diagnostic

support applications.

4.4. Model Interpretability (Grad-CAM)

To validate the decision-making process of the CNN, Gradient-weighted Class Activation
Mapping (Grad-CAM) was employed. This technique provides a visual explanation by
highlighting the spatial regions that contribute most to the model’s predictions. As illustrated in
Figure 4, the Grad-CAM heatmaps for correctly classified samples demonstrate that the model
consistently directs its attention toward the hyperintense tumor regions within the brain
parenchyma. These regions correspond to the pathological areas that radiologists typically

examine during clinical assessment.

Grad-CAM

Figure 7: Grad-CAM.
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The interpretability results further show that the model effectively disregards irrelevant structures
such as background noise and cranial bone features, indicating that its predictions are driven by
meaningful and disease-relevant patterns rather than spurious artifacts. This qualitative evidence
supports the claim that the model satisfies the explainability requirements necessary for safe and

trustworthy medical Al applications.

4.5. Computational Efficiency

Beyond accuracy, calibration, and interpretability, computational performance was an essential
optimization objective in this study. The MOPSO framework successfully identified a model
configuration that delivers high predictive capability while maintaining low inference latency.
The selected architecture operates with an average inference latency of 0.88 x 10~ 3seconds per
sample, which corresponds to less than one millisecond on the test hardware.

This sub-millisecond inference time indicates that the model can process more than 1,000 MRI
slices per second. Such computational efficiency is critical for real-time or near real-time
deployment in clinical workflows. The model’s speed allows it to be integrated seamlessly into
Picture Archiving and Communication Systems (PACS) without introducing delays, ensuring that
diagnostic pipelines remain efficient and responsive. The combination of rapid inference and high
diagnostic accuracy enhances the practicality of the system for clinical use, particularly in high-

throughput environments.

4.6. Comparative Performance Against Previous Studies

The performance of the proposed MOPSO-optimized CNN model demonstrates significant
improvements when compared with prior brain tumor MRI classification studies. After
undergoing multi-objective optimization, the final model achieved a test accuracy of 95 percent,
placing it among the highest performing deep learning approaches in this domain. Beyond
accuracy, the model also achieved an Expected Calibration Error of 1.48 percent and a sub-
millisecond inference latency, providing a balanced combination of accuracy, reliability, and
computational efficiency that earlier works seldom addressed simultaneously.

Previous studies in brain tumor classification reported a wide range of accuracy results depending
on feature extraction techniques, model architectures, and dataset sizes. Traditional approaches
that relied on handcrafted features, such as GLCM combined with Probabilistic Neural Networks,
attained an accuracy of 95 percent on relatively small datasets consisting of 650 DICOM samples
[9]. Deep learning methods trained on larger MRI collections generally achieved moderate
improvements, such as 88.77 percent accuracy using MobileNetV2 [10], 91.5 percent using

augmented Deep CNN models [11], and 93.30 percent using custom CNN architectures [19].
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Object detection based approaches like YOLOVS have been evaluated using precision, recall, and
mAP metrics rather than pure accuracy scores. These models achieved precision and recall values
between 81 and 86 percent, with mAP values ranging from 85 to 87 percent, illustrating strong
localization performance but leaving room for improvement in classification tasks [12]. Transfer
learning techniques also contributed notable performance gains, including a TTL-based model
reaching 94.5 percent accuracy [13] and VGG-16 achieving up to 94.98 percent in binary
classification and 89.19 percent in multiclass settings [20].

Compared with these studies, the proposed model demonstrates competitive, and in many cases
superior, classification performance while simultaneously enhancing model calibration and
inference speed. These improvements stem from the use of a multi-objective optimization
strategy, which tunes hyperparameters not only for accuracy but also for reliability and
computational efficiency. Consequently, the model is better aligned with clinical deployment
requirements, where both trustworthiness and real-time performance are essential.

Table 4: Comparison of the Proposed Model and Previous Studies

Author Dataset Size Method Metric Result
[9] 650 DICOM PNN + GLCM Accuracy 95%
[10] 4600 images MobileNetV2 Accuracy 88.77%
[11] 5712 images Deep CNN Accuracy 91.5%

(augmented 142k)
[12] 3064 MRI scans YOLOvV5 Precision 81.9%
Recall 83%
mAP 87%
YOLOvVS + NLNNs Precision 83.5%
Recall 86%
mAP 85.2%
[13] 6000 scans TTL Transfer Accuracy 94.5%
Learning
[14] 3064 scans Inception-v3 Accuracy 94.34%
Ensemble
[15] 2870 scans GLCM + HOG + Accuracy 91.1%
LBP (KNN)
[16] 7023 scans Three-Layer CNN Accuracy 89.79%
[17] - LeNet-based CNN Accuracy 88%
[18] 3064 scans Fisher Vector mAP 94.68%
[19] 3264 scans Custom CNN Accuracy 93.30%
[20] 7000 scans VGG-16 (binary) Accuracy 94.98%
Multiclass VGG-16 Accuracy 89.19%
Proposed 1311 scans (test MOPSO-Optimized Accuracy 95%
Method set) CNN
ECE 1.48%
Latency 0.88 ms

5 Conclusion

This study presented a Multi-Objective Particle Swarm Optimization (MOPSO)-driven framework for
optimizing a Convolutional Neural Network (CNN) applied to brain tumor classification using MRI

scans. By simultaneously optimizing validation error, calibration reliability, and inference latency, the

128


http://journals.cognispectra.com/index.php/aisa/index

Kafitra Marna Ibrahim & Zaky Zaujan Jayaputra

proposed approach offers a comprehensive performance improvement that addresses practical demands
in clinical diagnostics. The resulting model achieved high predictive accuracy combined with
exceptionally low calibration error and sub-millisecond inference latency, demonstrating its suitability
for real-time deployment.

One of the key contributions of this work lies in incorporating calibration awareness into the
optimization process, enabling the model to produce probability estimates that accurately reflect
predictive correctness. Additionally, the integration of latency as an optimization objective ensures
efficient computational performance, which is often overlooked in deep learning studies for medical
imaging. The Grad-CAM interpretability analysis further validated that model predictions are guided by
clinically relevant tumor regions, enhancing trustworthiness and transparency.

Comparison with existing literature shows that the proposed method matches or exceeds the
performance of state-of-the-art CNN and transfer learning models while additionally offering improved
calibration and computational efficiency. These advancements make the model highly promising for
integration into clinical workflows, such as real-time screening systems or PACS-based diagnostic
support tools.

Despite these strengths, several areas remain open for exploration. Future research may include
extending the model to multi-modal MRI scans (such as T1, T2, and FLAIR), incorporating volumetric
3D CNN architectures, or integrating hybrid optimization techniques such as NSGA-II or MOEA/D for
broader performance comparison. The incorporation of uncertainty quantification techniques, beyond
ECE, could further support its clinical adoption in high-risk decision-making environments.

While the proposed model demonstrates strong performance on the evaluated dataset, the limitation of
external validity inherent in single-dataset studies is acknowledged. Variations in MRI acquisition
parameters and scanner types across different medical centers may affect model generalizability.
Therefore, future research will prioritize validating this framework on multi-center datasets to ensure
robustness across diverse clinical environments.

Overall, the proposed MOPSO-optimized CNN presents a strong foundation for reliable, efficient, and
interpretable medical image classification, contributing valuable advancements to the development of

trustworthy artificial intelligence in healthcare.
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