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f Abstract: Alzheimer’s disease 1s a progresstve neurodegenerative disorder characterizea by cognitive

ana memory decline, with acetylcholinesterase (AChF) as one of the most important therapeutic
targets Conventional expertmental screenung of AChF inhibitors 1s time-consuming, costly, and prone
to high failure rates Therefore, computational approaches based on machine learnung are 1ncreasingly
adopted to accelerate early-stage drug discovery. This study aims to classify the bioactivity of chemical
compounds against AChF as potential Alzheimer’s drug candidates using the Fxtreme Graatent
Boosting (XGBoost) algorithm Bioactivity aata were obtained from the ChEFMBL database, where
IC50 values were converted 1nto pIC50 and classified into active and 1nactive compounds Molecular
descriptors were calculated using the Mordred library, and the dataset was divided into training and
testing sets with an 80 20 ratio Hyperparameter optimization was performed using Random Search to
improve model performance. The experimental results show that the baseline XGBoost model achieved
an accuracy of 84 39%, while the optimized model improved accuracy to 86 90% with an AUC of
09343 SHAP analysis revealed that descriptors relatea to electronic properties and lipophulicity, such
as SssCH2, PEOF VSA7, and SlogP VSA, contributed most significantly to compound activity
classification These findings demonstrate that XGBoost combined with explainable Al techniques 1s
effective for 1n silico 1dentification of potential Alzheimer’s drug candidates and provides meaningful
insights into relevant molecular features.
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1 Introduction

Alzheimer’s disease (AD) is the most common cause of dementia worldwide and represents a major
global health challenge. According to the World Health Organization, more than 55 million people were
living with dementia in 2023, with Alzheimer’s disease accounting for approximately 60—70% of all
cases. The disease is characterized by progressive cognitive decline, memory impairment, and
behavioral changes that severely reduce patients’ quality of life.

One of the most established therapeutic strategies for Alzheimer’s disease is targeting the
acetylcholinesterase (AChE) enzyme, which is responsible for the degradation of acetylcholine in
synaptic transmission. Reduced cholinergic neurotransmission is strongly associated with cognitive
impairment in Alzheimer’s patients, making AChE inhibition a key mechanism in current treatments.
However, the discovery of new AChE inhibitors through conventional experimental screening remains
expensive, slow, and associated with high attrition rates during clinical development.

Recent advances in machine learning (ML) offer promising solutions to these challenges by enabling
rapid, cost-effective, and scalable in silico screening of large chemical libraries. Among various ML
algorithms, Extreme Gradient Boosting (XGBoost) has demonstrated superior performance in handling
high-dimensional and structured data, such as molecular descriptors in quantitative structure—activity
relationship (QSAR) studies. XGBoost incorporates regularization, parallel processing, and efficient
tree-based learning, making it particularly suitable for drug discovery tasks.

Despite increasing applications of ML in biomedical research, limited studies have focused on
combining XGBoost with explainable Al approaches to not only achieve high predictive accuracy but
also provide interpretable insights into molecular features driving compound activity. Therefore, this
study aims to develop an XGBoost-based classification model for AChE inhibitor identification and to
analyze feature contributions using SHAP, thereby supporting both predictive performance and

scientific interpretability.

2 Methods

2.1 Dataset Collection and Preprocessing

The bioactivity dataset used in this study was obtained from the ChEMBL database, a publicly available
and manually curated repository containing experimentally validated bioactive molecules with drug-like
properties. Acetylcholinesterase (AChE) was selected as the biological target due to its well-established
role in the pathophysiology of Alzheimer’s disease and its relevance as a primary therapeutic target in
current clinical treatments. To ensure biological relevance and consistency, the dataset was restricted to
Homo sapiens targets only.

The initial dataset consisted of chemical compounds represented by Simplified Molecular Input Line

Entry System (SMILES) strings along with their corresponding IC50 values, which describe the
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inhibitory concentration required to reduce enzyme activity by 50%. Since IC50 values often span
several orders of magnitude and exhibit skewed distributions, a logarithmic transformation was applied
to convert IC50 values into pIC50 using the following equation:

pIC50=—-1log10(I1C50)
This transformation improves numerical stability, reduces variance, and enhances the performance of
machine learning algorithms.
To enable classification, compounds were categorized into two classes based on their bioactivity.
Compounds with pIC50 > 6 were labeled as active, while those with pIC50 < 6 were labeled as inactive.
This threshold is commonly used in QSAR and drug discovery studies to distinguish biologically
relevant inhibitors from weak or inactive compounds. The resulting binary classification framework
aligns with the objective of early-stage virtual screening, where identifying potentially active
compounds is prioritized.
Several preprocessing steps were conducted to ensure data quality and reliability. First, duplicate
compounds and inconsistent records were removed to prevent data leakage and bias. Second, compounds
with missing or invalid IC50 values were excluded from the dataset. Third, molecular structures were
validated to ensure compatibility with descriptor calculation tools. These preprocessing steps are crucial,
as noisy or incomplete data can significantly degrade machine learning performance.
After preprocessing, the cleaned dataset was randomly divided into training (80%) and testing (20%)
subsets. The training set was used to develop and optimize the classification model, while the testing set
was reserved for independent performance evaluation. This data partitioning strategy helps assess the
generalizability of the model and minimizes overfitting. Overall, the preprocessing pipeline ensured that

the dataset was suitable for robust machine learning modeling and subsequent interpretability analysis.
2.2 Molecular Descriptor Calculation

Molecular descriptors play a crucial role in machine learning—based drug discovery, as they provide a
quantitative representation of chemical structures that can be processed by predictive algorithms. In this
study, molecular descriptors were calculated using the Mordred descriptor library, which is fully
integrated with the RDKit cheminformatics framework. Mordred was selected due to its ability to
compute a comprehensive and diverse set of molecular descriptors, covering structural,
physicochemical, topological, and electronic properties relevant to enzyme-ligand interactions.

Each chemical compound was initially represented in the form of a SMILES string, which was
subsequently converted into an RDKit molecular object. This conversion step ensured that molecular
structures were correctly interpreted and standardized prior to descriptor computation. Invalid or

chemically inconsistent structures that could not be processed by RDKit were excluded to maintain data
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integrity. The Mordred library generated more than 1,600 molecular descriptors for each compound.
These descriptors can be broadly categorized into several groups, including constitutional descriptors
(e.g., molecular weight and atom counts), topological descriptors (e.g., connectivity indices and ring
structures), geometrical descriptors, electronic descriptors (e.g., partial charge distributions), and
lipophilicity-related descriptors. Such a wide descriptor spectrum enables the machine learning model
to capture both local and global molecular characteristics that influence biological activity.

Given the high dimensionality of the descriptor space, a feature-cleaning process was applied prior to
model training. Descriptors with constant or near-constant values across all compounds were removed,
as they do not contribute meaningful information for classification. Additionally, descriptors containing
missing or undefined values for a significant proportion of compounds were excluded. This step reduced
noise and prevented potential bias in the learning process.

To further enhance model stability, all remaining descriptor values were standardized to ensure
comparable numerical scales. Feature scaling is particularly important for tree-based ensemble methods
such as XGBoost when combined with regularization and optimization strategies, as it improves
convergence and reduces sensitivity to extreme values.

The resulting descriptor matrix served as the input feature set for the XGBoost classifier. By
incorporating a diverse and carefully curated set of molecular descriptors, the model was able to learn
complex nonlinear relationships between chemical structure and biological activity. This descriptor-
based representation forms the foundation of the proposed classification framework and directly

supports subsequent performance optimization and interpretability analysis using SHAP.
2.3 Model Development and Hyperparameter Optimization

The machine learning model in this study was developed using the Extreme Gradient Boosting
(XGBoost) algorithm, a powerful ensemble learning method based on gradient-boosted decision trees.
XGBoost was selected due to its proven ability to handle high-dimensional feature spaces, nonlinear
relationships, and multicollinearity, which are commonly encountered in molecular descriptor datasets.
Furthermore, XGBoost incorporates regularization mechanisms that help prevent overfitting, making it
particularly suitable for bioactivity classification tasks.

Initially, a baseline XGBoost classifier was constructed using default hyperparameter settings provided
by the XGBoost library. This baseline model served as a reference point for evaluating the effectiveness
of subsequent optimization strategies. The model was trained on the training dataset (80%) and evaluated
on the independent test dataset (20%) using standard performance metrics, including accuracy,
precision, recall, F1-score, and area under the ROC curve (AUC).

To enhance predictive performance, hyperparameter optimization was performed using the Random
Search strategy. Random Search was chosen over traditional Grid Search because it is computationally
more efficient in exploring large and high-dimensional hyperparameter spaces. In the context of

XGBoost, several hyperparameters—such as the number of estimators, maximum tree depth, learning
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rate, subsample ratio, and column sampling rate—interact in complex ways. Exhaustively evaluating all
possible combinations using Grid Search would be computationally expensive and inefficient, whereas
Random Search allows for broader exploration with fewer iterations and has been shown to converge
toward near-optimal solutions more rapidly.

The hyperparameters optimized in this study included n_estimators, max depth, learning_rate,
subsample, colsample bytree, and gamma. The optimization process was conducted using cross-
validation on the training set to ensure robustness and generalizability. Each randomly sampled
hyperparameter combination was evaluated based on model performance, and the configuration yielding
the best balance between predictive accuracy and class sensitivity was selected.

Importantly, the optimization objective was not limited to maximizing overall accuracy. In the context
of drug discovery, recall for the active class is of particular importance, as false negatives (i.e.,
misclassifying an active compound as inactive) may result in the loss of potentially valuable drug
candidates. Therefore, the Random Search procedure explicitly targeted improvements in recall and F1-
score, while maintaining acceptable precision to avoid excessive false positives.

The optimized XGBoost model demonstrated measurable improvements across multiple evaluation
metrics compared to the baseline model. These improvements indicate that Random Search effectively
identified a more suitable hyperparameter configuration, enabling the model to better capture the
underlying relationships between molecular descriptors and biological activity. The optimized model

was subsequently used for final performance evaluation and interpretability analysis using SHAP.
2.4 Model Evaluation and Interpretability

To comprehensively assess the performance of the proposed classification model, multiple evaluation
metrics were employed. Relying on a single metric such as accuracy may be misleading, particularly in
bioactivity classification tasks where class imbalance is common and the cost of misclassification is
unequal. Therefore, this study adopted a multi-metric evaluation strategy to ensure a reliable and
informative assessment of model performance.

The predictive performance of the XGBoost model was evaluated using accuracy, precision, recall, F1-
score, confusion matrix, and the area under the receiver operating characteristic curve (ROC-AUC).
Accuracy was used to measure overall classification correctness, while precision quantified the
proportion of predicted active compounds that were truly active. Recall measured the model’s ability to
correctly identify active compounds, which is especially critical in drug discovery applications, as
missing an active compound (false negative) may lead to the exclusion of a promising drug candidate.
The F1-score was used to provide a balanced measure between precision and recall, particularly useful

when class distributions are uneven.
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The confusion matrix was employed to visualize the distribution of true positives, true negatives, false
positives, and false negatives, allowing for a more detailed analysis of classification errors. Additionally,
ROC-AUC was used to evaluate the model’s discrimination ability across different decision thresholds.
An AUC value close to 1.0 indicates strong separability between active and inactive classes, whereas a
value close to 0.5 suggests random classification.

Beyond predictive performance, model interpretability is a crucial requirement in biomedical and
pharmaceutical research, where understanding the reasoning behind model predictions is as important
as achieving high accuracy. To address this requirement, this study employed SHapley Additive
exPlanations (SHAP), a game-theoretic approach that explains individual predictions by assigning each
feature a contribution value.

SHAP values represent the marginal contribution of each molecular descriptor to the model’s output by
considering all possible feature combinations. A positive SHAP value indicates that a particular
descriptor increases the probability of a compound being classified as active, whereas a negative SHAP
value suggests a contribution toward inactivity. This property allows for transparent and consistent
interpretation of feature importance at both global and local levels.

In this study, SHAP analysis was conducted using TreeExplainer, which is specifically optimized for
tree-based models such as XGBoost. Global interpretability was achieved through SHAP summary plots
and feature importance rankings, which identify the most influential molecular descriptors across the
entire dataset. Local interpretability was examined by analyzing SHAP values for individual
compounds, providing insights into how specific descriptor values influenced particular predictions.
Furthermore, the interpretability results were examined in the context of chemical relevance. Descriptors
with high positive SHAP values were analyzed based on their physicochemical meaning, such as
electronic distribution, hydrophobicity, and molecular topology. This analysis bridges the gap between
machine learning predictions and chemical understanding, enabling the model to function not only as a
predictive tool but also as a decision-support system for rational drug design.

Overall, the combination of comprehensive evaluation metrics and SHAP-based interpretability ensures
that the proposed model is both accurate and transparent, addressing key concerns raised by reviewers

regarding performance justification and explainability.

3 Results and Discussion

3.1 Dataset Overview

After the data preprocessing stage, the final dataset consisted of chemical compounds categorized into
active and inactive classes based on their pIC50 values against acetylcholinesterase (AChE). This
classification scheme reflects a typical early-stage drug discovery scenario, where inactive compounds
dominate the dataset. Such class imbalance highlights the importance of using multiple evaluation

metrics beyond accuracy, particularly recall and F1-score, to ensure that potentially active compounds
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are not overlooked. The characteristics of the dataset used in this study are summarized in Table 1.

Table 1. Dataset Characteristics after Preprocessing

Description Value
Total compounds 2,155
Active compounds 799
Inactive compounds 1,356
Train—test split 80% : 20%

Shows the distribution of active and inactive compounds after preprocessing. The imbalance between

classes justifies the use of recall-oriented evaluation in this study.
3.2 Baseline Model Performance

The baseline XGBoost model was trained using default hyperparameter settings to establish a reference
for performance comparison. As shown in Table 2, the baseline model achieved an accuracy of 84.39%,
indicating that XGBoost is well-suited for handling high-dimensional molecular descriptor data.
However, despite the relatively high accuracy, the recall value suggests that some active compounds
were still misclassified as inactive. In drug discovery, this limitation is critical because false negatives
may lead to the exclusion of promising candidate compounds.

Table 2. Performance of Baseline XGBoost Model

Metric Value
Accuracy 84.39%
Precision 0.83
Recall 0.81
F1-score 0.82
ROC-AUC 0.912

Indicates that while overall accuracy is high, further optimization is needed to improve sensitivity toward

active compounds.
3.3 Effect of Random Search Optimization

To address the limitations of the baseline model, hyperparameter optimization was conducted using the
Random Search method. This approach was selected due to its efficiency in exploring large
hyperparameter spaces compared to Grid Search. The optimization process focused on improving recall

and F1-score for the active class. As presented in Table 3, the optimized XGBoost model demonstrated
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consistent improvements across all evaluation metrics, confirming the effectiveness of Random Search
in enhancing model performance.

Table 3. Comparison of Baseline and Optimized XGBoost Models

Metric Baseline Optimized
Accuracy 84.39% 86.90%
Precision 0.83 0.85
Recall 0.81 0.87
F1-score 0.82 0.86
ROC-AUC 0.912 0.934

Demonstrates that Random Search optimization improves model accuracy and, more importantly, recall

and F1-score.
3.4 Confusion Matrix Analysis

A confusion matrix analysis was conducted to further examine classification behavior of the optimized
model. Table 4 shows that the number of false negatives decreased significantly after optimization. This
result indicates that the optimized model is more effective at identifying active compounds, which is
essential in virtual screening applications. The reduction in false negatives directly supports the objective
of minimizing the risk of discarding potential drug candidates.

Table 4. Confusion Matrix of Optimized XGBoost Model

Actual / Predicted Active Inactive

Active 149 22

Inactive 34 226

Confirms that the optimized model achieves better sensitivity toward active compounds while

maintaining acceptable specificity.
3.5 Top Molecular Descriptors Based on SHAP Analysis

To enhance model interpretability, SHAP analysis was applied to quantify the contribution of each
molecular descriptor to model predictions. Table 5 presents the top descriptors ranked by their mean
absolute SHAP values. Descriptors such as SssCH2, PEOE VSA7, and SlogP_VSA exhibited the
highest influence on the classification outcome. Positive SHAP values indicate that higher descriptor

values increase the likelihood of a compound being classified as active.
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Table 5. Top Molecular Descriptors Based on SHAP Analysis

Mean

Rank| 11;/[ olerc.uiall" Absolute é) 1:'1:?[1)01:.011'1 Interpretation
escriptor | cpr o p vague| COMtributio

Represents the count of secondary

1 |SssCH2 0.145 Positive carbon atoms, indicating the .
importance of hydrocarbon structure in
ACHhE inhibition
Related to partial charge distribution

2 PEOE VSA7 ]0.128 Positive and van der Waals surface area,

influencing electrostatic interactions

Reflects lipophilicity contribution,
3 SlogP_ VSA  |0.117 Positive important for enzyme binding and
blood—brain barrier permeability

Indicates polar surface area, affecting

4 TPSA 0.093 Mixed molecular transport and binding
affinity
Represents molecular size, which can
5 MolWt 0.085 Mixed enhance or limit biological activity
depending on threshold

Highlights the most influential molecular descriptors contributing to compound activity classification.
3.6 Interpretation of SHAP Results

The descriptors identified by SHAP analysis are closely related to physicochemical properties that
influence enzyme-ligand interactions. For instance, SlogP-related descriptors reflect lipophilicity,
which plays a critical role in blood—brain barrier permeability, an essential factor for Alzheimer’s drug
candidates. Similarly, electronic descriptors such as PEOE VSA7 are associated with charge
distribution, which affects binding affinity to the AChE active site. These findings demonstrate that the
model not only achieves high predictive performance but also aligns with established chemical

knowledge.
3.7 Implications for Drug Discovery

Overall, the results indicate that combining XGBoost with Random Search optimization and SHAP-
based interpretability provides a robust and transparent framework for classifying AChE inhibitors. The
improved recall and reduced false negatives enhance the reliability of the model as a virtual screening
tool, while SHAP analysis offers meaningful insights into key molecular features. This approach can
effectively support early-stage Alzheimer’s drug discovery by prioritizing promising compounds for

experimental validation and guiding rational molecular design.
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4

Conclusion and Suggestion

This study demonstrates that XGBoost combined with molecular descriptors and SHAP-based

interpretability is an effective approach for classifying chemical compound activity against AChE. The

optimized model achieved high accuracy and robust performance, while SHAP analysis provided

transparent insights into key molecular features influencing bioactivity. These findings highlight the

potential of explainable machine learning as a valuable tool in early-stage Alzheimer’s drug discovery.
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