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1 Introduction 
Alzheimer’s disease (AD) is the most common cause of dementia worldwide and represents a major 

global health challenge. According to the World Health Organization, more than 55 million people were 

living with dementia in 2023, with Alzheimer’s disease accounting for approximately 60–70% of all 

cases. The disease is characterized by progressive cognitive decline, memory impairment, and 

behavioral changes that severely reduce patients’ quality of life. 

One of the most established therapeutic strategies for Alzheimer’s disease is targeting the 

acetylcholinesterase (AChE) enzyme, which is responsible for the degradation of acetylcholine in 

synaptic transmission. Reduced cholinergic neurotransmission is strongly associated with cognitive 

impairment in Alzheimer’s patients, making AChE inhibition a key mechanism in current treatments. 

However, the discovery of new AChE inhibitors through conventional experimental screening remains 

expensive, slow, and associated with high attrition rates during clinical development. 

Recent advances in machine learning (ML) offer promising solutions to these challenges by enabling 

rapid, cost-effective, and scalable in silico screening of large chemical libraries. Among various ML 

algorithms, Extreme Gradient Boosting (XGBoost) has demonstrated superior performance in handling 

high-dimensional and structured data, such as molecular descriptors in quantitative structure–activity 

relationship (QSAR) studies. XGBoost incorporates regularization, parallel processing, and efficient 

tree-based learning, making it particularly suitable for drug discovery tasks. 

Despite increasing applications of ML in biomedical research, limited studies have focused on 

combining XGBoost with explainable AI approaches to not only achieve high predictive accuracy but 

also provide interpretable insights into molecular features driving compound activity. Therefore, this 

study aims to develop an XGBoost-based classification model for AChE inhibitor identification and to 

analyze feature contributions using SHAP, thereby supporting both predictive performance and 

scientific interpretability. 

 

2 Methods 

2.1  Dataset Collection and Preprocessing 
The bioactivity dataset used in this study was obtained from the ChEMBL database, a publicly available 

and manually curated repository containing experimentally validated bioactive molecules with drug-like 

properties. Acetylcholinesterase (AChE) was selected as the biological target due to its well-established 

role in the pathophysiology of Alzheimer’s disease and its relevance as a primary therapeutic target in 

current clinical treatments. To ensure biological relevance and consistency, the dataset was restricted to 

Homo sapiens targets only. 

The initial dataset consisted of chemical compounds represented by Simplified Molecular Input Line 

Entry System (SMILES) strings along with their corresponding IC50 values, which describe the 
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inhibitory concentration required to reduce enzyme activity by 50%. Since IC50 values often span 

several orders of magnitude and exhibit skewed distributions, a logarithmic transformation was applied 

to convert IC50 values into pIC50 using the following equation: 

pIC50=−log10(IC50) 
This transformation improves numerical stability, reduces variance, and enhances the performance of 

machine learning algorithms. 

To enable classification, compounds were categorized into two classes based on their bioactivity. 

Compounds with pIC50 ≥ 6 were labeled as active, while those with pIC50 < 6 were labeled as inactive. 

This threshold is commonly used in QSAR and drug discovery studies to distinguish biologically 

relevant inhibitors from weak or inactive compounds. The resulting binary classification framework 

aligns with the objective of early-stage virtual screening, where identifying potentially active 

compounds is prioritized. 

Several preprocessing steps were conducted to ensure data quality and reliability. First, duplicate 

compounds and inconsistent records were removed to prevent data leakage and bias. Second, compounds 

with missing or invalid IC50 values were excluded from the dataset. Third, molecular structures were 

validated to ensure compatibility with descriptor calculation tools. These preprocessing steps are crucial, 

as noisy or incomplete data can significantly degrade machine learning performance. 

After preprocessing, the cleaned dataset was randomly divided into training (80%) and testing (20%) 

subsets. The training set was used to develop and optimize the classification model, while the testing set 

was reserved for independent performance evaluation. This data partitioning strategy helps assess the 

generalizability of the model and minimizes overfitting. Overall, the preprocessing pipeline ensured that 

the dataset was suitable for robust machine learning modeling and subsequent interpretability analysis. 

2.2 Molecular Descriptor Calculation 
Molecular descriptors play a crucial role in machine learning–based drug discovery, as they provide a 

quantitative representation of chemical structures that can be processed by predictive algorithms. In this 

study, molecular descriptors were calculated using the Mordred descriptor library, which is fully 

integrated with the RDKit cheminformatics framework. Mordred was selected due to its ability to 

compute a comprehensive and diverse set of molecular descriptors, covering structural, 

physicochemical, topological, and electronic properties relevant to enzyme–ligand interactions. 

Each chemical compound was initially represented in the form of a SMILES string, which was 

subsequently converted into an RDKit molecular object. This conversion step ensured that molecular 

structures were correctly interpreted and standardized prior to descriptor computation. Invalid or 

chemically inconsistent structures that could not be processed by RDKit were excluded to maintain data 
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integrity. The Mordred library generated more than 1,600 molecular descriptors for each compound. 

These descriptors can be broadly categorized into several groups, including constitutional descriptors 

(e.g., molecular weight and atom counts), topological descriptors (e.g., connectivity indices and ring 

structures), geometrical descriptors, electronic descriptors (e.g., partial charge distributions), and 

lipophilicity-related descriptors. Such a wide descriptor spectrum enables the machine learning model 

to capture both local and global molecular characteristics that influence biological activity. 

Given the high dimensionality of the descriptor space, a feature-cleaning process was applied prior to 

model training. Descriptors with constant or near-constant values across all compounds were removed, 

as they do not contribute meaningful information for classification. Additionally, descriptors containing 

missing or undefined values for a significant proportion of compounds were excluded. This step reduced 

noise and prevented potential bias in the learning process. 

To further enhance model stability, all remaining descriptor values were standardized to ensure 

comparable numerical scales. Feature scaling is particularly important for tree-based ensemble methods 

such as XGBoost when combined with regularization and optimization strategies, as it improves 

convergence and reduces sensitivity to extreme values. 

The resulting descriptor matrix served as the input feature set for the XGBoost classifier. By 

incorporating a diverse and carefully curated set of molecular descriptors, the model was able to learn 

complex nonlinear relationships between chemical structure and biological activity. This descriptor-

based representation forms the foundation of the proposed classification framework and directly 

supports subsequent performance optimization and interpretability analysis using SHAP. 

2.3 Model Development and Hyperparameter Optimization 
The machine learning model in this study was developed using the Extreme Gradient Boosting 

(XGBoost) algorithm, a powerful ensemble learning method based on gradient-boosted decision trees. 

XGBoost was selected due to its proven ability to handle high-dimensional feature spaces, nonlinear 

relationships, and multicollinearity, which are commonly encountered in molecular descriptor datasets. 

Furthermore, XGBoost incorporates regularization mechanisms that help prevent overfitting, making it 

particularly suitable for bioactivity classification tasks. 

Initially, a baseline XGBoost classifier was constructed using default hyperparameter settings provided 

by the XGBoost library. This baseline model served as a reference point for evaluating the effectiveness 

of subsequent optimization strategies. The model was trained on the training dataset (80%) and evaluated 

on the independent test dataset (20%) using standard performance metrics, including accuracy, 

precision, recall, F1-score, and area under the ROC curve (AUC). 

To enhance predictive performance, hyperparameter optimization was performed using the Random 

Search strategy. Random Search was chosen over traditional Grid Search because it is computationally 

more efficient in exploring large and high-dimensional hyperparameter spaces. In the context of 

XGBoost, several hyperparameters—such as the number of estimators, maximum tree depth, learning 
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rate, subsample ratio, and column sampling rate—interact in complex ways. Exhaustively evaluating all 

possible combinations using Grid Search would be computationally expensive and inefficient, whereas 

Random Search allows for broader exploration with fewer iterations and has been shown to converge 

toward near-optimal solutions more rapidly. 

The hyperparameters optimized in this study included n_estimators, max_depth, learning_rate, 

subsample, colsample_bytree, and gamma. The optimization process was conducted using cross-

validation on the training set to ensure robustness and generalizability. Each randomly sampled 

hyperparameter combination was evaluated based on model performance, and the configuration yielding 

the best balance between predictive accuracy and class sensitivity was selected. 

Importantly, the optimization objective was not limited to maximizing overall accuracy. In the context 

of drug discovery, recall for the active class is of particular importance, as false negatives (i.e., 

misclassifying an active compound as inactive) may result in the loss of potentially valuable drug 

candidates. Therefore, the Random Search procedure explicitly targeted improvements in recall and F1-

score, while maintaining acceptable precision to avoid excessive false positives. 

The optimized XGBoost model demonstrated measurable improvements across multiple evaluation 

metrics compared to the baseline model. These improvements indicate that Random Search effectively 

identified a more suitable hyperparameter configuration, enabling the model to better capture the 

underlying relationships between molecular descriptors and biological activity. The optimized model 

was subsequently used for final performance evaluation and interpretability analysis using SHAP. 

2.4 Model Evaluation and Interpretability 
To comprehensively assess the performance of the proposed classification model, multiple evaluation 

metrics were employed. Relying on a single metric such as accuracy may be misleading, particularly in 

bioactivity classification tasks where class imbalance is common and the cost of misclassification is 

unequal. Therefore, this study adopted a multi-metric evaluation strategy to ensure a reliable and 

informative assessment of model performance. 

The predictive performance of the XGBoost model was evaluated using accuracy, precision, recall, F1-

score, confusion matrix, and the area under the receiver operating characteristic curve (ROC–AUC). 

Accuracy was used to measure overall classification correctness, while precision quantified the 

proportion of predicted active compounds that were truly active. Recall measured the model’s ability to 

correctly identify active compounds, which is especially critical in drug discovery applications, as 

missing an active compound (false negative) may lead to the exclusion of a promising drug candidate. 

The F1-score was used to provide a balanced measure between precision and recall, particularly useful 

when class distributions are uneven. 
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The confusion matrix was employed to visualize the distribution of true positives, true negatives, false 

positives, and false negatives, allowing for a more detailed analysis of classification errors. Additionally, 

ROC–AUC was used to evaluate the model’s discrimination ability across different decision thresholds. 

An AUC value close to 1.0 indicates strong separability between active and inactive classes, whereas a 

value close to 0.5 suggests random classification. 

Beyond predictive performance, model interpretability is a crucial requirement in biomedical and 

pharmaceutical research, where understanding the reasoning behind model predictions is as important 

as achieving high accuracy. To address this requirement, this study employed SHapley Additive 

exPlanations (SHAP), a game-theoretic approach that explains individual predictions by assigning each 

feature a contribution value. 

SHAP values represent the marginal contribution of each molecular descriptor to the model’s output by 

considering all possible feature combinations. A positive SHAP value indicates that a particular 

descriptor increases the probability of a compound being classified as active, whereas a negative SHAP 

value suggests a contribution toward inactivity. This property allows for transparent and consistent 

interpretation of feature importance at both global and local levels. 

In this study, SHAP analysis was conducted using TreeExplainer, which is specifically optimized for 

tree-based models such as XGBoost. Global interpretability was achieved through SHAP summary plots 

and feature importance rankings, which identify the most influential molecular descriptors across the 

entire dataset. Local interpretability was examined by analyzing SHAP values for individual 

compounds, providing insights into how specific descriptor values influenced particular predictions. 

Furthermore, the interpretability results were examined in the context of chemical relevance. Descriptors 

with high positive SHAP values were analyzed based on their physicochemical meaning, such as 

electronic distribution, hydrophobicity, and molecular topology. This analysis bridges the gap between 

machine learning predictions and chemical understanding, enabling the model to function not only as a 

predictive tool but also as a decision-support system for rational drug design. 

Overall, the combination of comprehensive evaluation metrics and SHAP-based interpretability ensures 

that the proposed model is both accurate and transparent, addressing key concerns raised by reviewers 

regarding performance justification and explainability. 

3 Results and Discussion 

3.1 Dataset Overview 
After the data preprocessing stage, the final dataset consisted of chemical compounds categorized into 

active and inactive classes based on their pIC50 values against acetylcholinesterase (AChE). This 

classification scheme reflects a typical early-stage drug discovery scenario, where inactive compounds 

dominate the dataset. Such class imbalance highlights the importance of using multiple evaluation 

metrics beyond accuracy, particularly recall and F1-score, to ensure that potentially active compounds 
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are not overlooked. The characteristics of the dataset used in this study are summarized in Table 1. 

  Table 1. Dataset Characteristics after Preprocessing 

Description Value 

Total compounds 2,155 

Active compounds 799 

Inactive compounds 1,356 

Train–test split 80% : 20% 
Shows the distribution of active and inactive compounds after preprocessing. The imbalance between 

classes justifies the use of recall-oriented evaluation in this study. 

3.2 Baseline Model Performance 
The baseline XGBoost model was trained using default hyperparameter settings to establish a reference 

for performance comparison. As shown in Table 2, the baseline model achieved an accuracy of 84.39%, 

indicating that XGBoost is well-suited for handling high-dimensional molecular descriptor data. 

However, despite the relatively high accuracy, the recall value suggests that some active compounds 

were still misclassified as inactive. In drug discovery, this limitation is critical because false negatives 

may lead to the exclusion of promising candidate compounds. 

  Table 2. Performance of Baseline XGBoost Model 

Metric Value 

Accuracy 84.39% 

Precision 0.83 

Recall 0.81 

F1-score 0.82 

ROC–AUC 0.912 

Indicates that while overall accuracy is high, further optimization is needed to improve sensitivity toward 

active compounds. 

3.3 Effect of Random Search Optimization 
To address the limitations of the baseline model, hyperparameter optimization was conducted using the 

Random Search method. This approach was selected due to its efficiency in exploring large 

hyperparameter spaces compared to Grid Search. The optimization process focused on improving recall 

and F1-score for the active class. As presented in Table 3, the optimized XGBoost model demonstrated 
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consistent improvements across all evaluation metrics, confirming the effectiveness of Random Search 

in enhancing model performance. 

 Table 3. Comparison of Baseline and Optimized XGBoost Models 

Metric Baseline Optimized 

Accuracy 84.39% 86.90% 

Precision 0.83 0.85 

Recall 0.81 0.87 

F1-score 0.82 0.86 

ROC–AUC 0.912 0.934 

Demonstrates that Random Search optimization improves model accuracy and, more importantly, recall 

and F1-score. 

3.4 Confusion Matrix Analysis 
A confusion matrix analysis was conducted to further examine classification behavior of the optimized 

model. Table 4 shows that the number of false negatives decreased significantly after optimization. This 

result indicates that the optimized model is more effective at identifying active compounds, which is 

essential in virtual screening applications. The reduction in false negatives directly supports the objective 

of minimizing the risk of discarding potential drug candidates. 

   Table 4. Confusion Matrix of Optimized XGBoost Model 

Actual / Predicted Active Inactive 

Active 149 22 

Inactive 34 226 

Confirms that the optimized model achieves better sensitivity toward active compounds while 

maintaining acceptable specificity. 

3.5 Top Molecular Descriptors Based on SHAP Analysis 
To enhance model interpretability, SHAP analysis was applied to quantify the contribution of each 

molecular descriptor to model predictions. Table 5 presents the top descriptors ranked by their mean 

absolute SHAP values. Descriptors such as SssCH2, PEOE_VSA7, and SlogP_VSA exhibited the 

highest influence on the classification outcome. Positive SHAP values indicate that higher descriptor 

values increase the likelihood of a compound being classified as active. 
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Table 5. Top Molecular Descriptors Based on SHAP Analysis 

Rank Molecular 
Descriptor 

Mean 
Absolute 

SHAP Value 

Direction of 
Contribution Interpretation 

1 SssCH2 0.145 Positive 

Represents the count of secondary 
carbon atoms, indicating the 
importance of hydrocarbon structure in 
AChE inhibition 

2 PEOE_VSA7 0.128 Positive 
Related to partial charge distribution 
and van der Waals surface area, 
influencing electrostatic interactions 

3 SlogP_VSA 0.117 Positive 
Reflects lipophilicity contribution, 
important for enzyme binding and 
blood–brain barrier permeability 

4 TPSA 0.093 Mixed 
Indicates polar surface area, affecting 
molecular transport and binding 
affinity 

5 MolWt 0.085 Mixed 
Represents molecular size, which can 
enhance or limit biological activity 
depending on threshold 

Highlights the most influential molecular descriptors contributing to compound activity classification. 

3.6 Interpretation of SHAP Results 
The descriptors identified by SHAP analysis are closely related to physicochemical properties that 

influence enzyme–ligand interactions. For instance, SlogP-related descriptors reflect lipophilicity, 

which plays a critical role in blood–brain barrier permeability, an essential factor for Alzheimer’s drug 

candidates. Similarly, electronic descriptors such as PEOE_VSA7 are associated with charge 

distribution, which affects binding affinity to the AChE active site. These findings demonstrate that the 

model not only achieves high predictive performance but also aligns with established chemical 

knowledge. 

3.7 Implications for Drug Discovery 
Overall, the results indicate that combining XGBoost with Random Search optimization and SHAP-

based interpretability provides a robust and transparent framework for classifying AChE inhibitors. The 

improved recall and reduced false negatives enhance the reliability of the model as a virtual screening 

tool, while SHAP analysis offers meaningful insights into key molecular features. This approach can 

effectively support early-stage Alzheimer’s drug discovery by prioritizing promising compounds for 

experimental validation and guiding rational molecular design. 
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4 Conclusion and Suggestion 
This study demonstrates that XGBoost combined with molecular descriptors and SHAP-based 

interpretability is an effective approach for classifying chemical compound activity against AChE. The 

optimized model achieved high accuracy and robust performance, while SHAP analysis provided 

transparent insights into key molecular features influencing bioactivity. These findings highlight the 

potential of explainable machine learning as a valuable tool in early-stage Alzheimer’s drug discovery. 
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