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Abstract: Sarcasm is a complex communicative phenomenon frequently encountered in social media, 
where the literal meaning of language sharply contradicts the speaker’s true intent, often reinforced by 
multimodal cues such as incongruent images or memes. While prior research has primarily focused on 
detecting sarcasm, far less attention has been devoted to generating human-interpretable explanations that 
clarify why content is sarcastic. This study addresses this gap by systematically evaluating the capabilities 
of fifteen Vision–Language Models (VLMs) of varying parameter sizes to produce multimodal sarcasm 
explanations under zero-shot and few-shot learning conditions. Using the publicly available MORE dataset 
of social media posts annotated with concise human-written explanations, we benchmarked each model’s 
outputs with three widely used evaluation metrics, including ROUGE, BERTScore, and Sentence-BERT, 
to assess both surface-level overlap and deeper semantic alignment. Our findings reveal that smaller models 
can rival or even outperform larger architectures in n-gram similarity measures, while embedding-based 
metrics often yield high scores even when generated explanations contradict the ground truth. These results 
highlight the limitations of current automatic metrics in reliably capturing the nuanced reasoning underlying 
sarcasm. Overall, this work demonstrates that model scale does not consistently predict explanation quality 
and underscores the need for more robust evaluation protocols. 
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1. Introduction 

“Thanks for the dinner, nothing beats a cold slice of cardboard.” This expression illustrates sarcasm, 

where the literal meaning of the words contrasts sharply with the speaker’s true intent [1]. Sarcasm 

represents a distinctive form of emotional expression in which individuals convey meaning that 

contradicts their genuine feelings or intentions, often through ironic or contradictory statements [2]. 

Such expression relies on subtle cues intonation, context, and shared knowledge that are typically 

understood intuitively by humans. Managing with multimodal information requires an understanding 

of the data displayed totally different modalities. For machines, especially in multimodal contexts, 

distinguishing between literal content and underlying intent remains a formidable challenge. When 

sarcastic text is combined with an incongruent image or meme, the resulting semantic mismatch 

becomes difficult to decode using literal interpretation alone. This complexity not only hinders 

classification but also impedes the generation of reliable and interpretable explanations. As a result, 

effective sarcasm understanding must go beyond detection it must also provide meaningful explanation 

to support transparency and accountability in Artificial Intelligence (AI). 

Sarcasm is increasingly prevalent across social media platforms like X/Twitter, Instagram, and 

TikTok, where sharp commentary is often paired with contradictory visuals to enhance humor or 

critique. Recent studies have shown that such verbal-visual incongruity is not incidental, but central to 

the communicative intent [3]. Consequently, literal-only models frequently fail to detect the irony, 

leading to system errors that undermine user trust. While interest in multimodal sarcasm detection has 

surged since 2022 [4], [5], [6], the majority of research continues to focus on classification, with 

limited attention to explanation generation. This gap underscores the need for a new research direction 

that not only identifies sarcasm but also rationalizes it in a form comprehensible to humans. 

Despite its importance, most existing research on sarcasm remains limited to detection, often 

leveraging large-scale, fine-tuned models trained on extensive annotated datasets. However, such 

conditions rarely reflect real-world deployment scenarios, where labeled data may be scarce or 

unavailable. In these cases, models must generalize with minimal or no task-specific supervision, 

making zero-shot and few-shot learning critical. Furthermore, few studies have explored how multiple 

Vision-Language Models (VLMs) with varying parameter sizes perform under these constraints or 

examined how robust they are to variations in input length and caption structure both common in social 

media data. Compounding these issues is the lack of consensus on evaluation standards: although 

ROUGE, BERTScore, and SentenceBERT are widely used, their ability to capture the semantic 

richness and irony of sarcastic explanations remains uncertain. 

This study aims to address these gaps by conducting a comprehensive evaluation of 15 Vision-

Language Models with different parameter scales, using a publicly available Multimodal Sarcasm 
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Explanation dataset. The experiments are designed to assess both zero-shot and few-shot performance. 

The following research questions guide our investigation: 

● RQ1: How do VLMs with different parameter sizes perform in generating multimodal 

sarcasm explanations under zero-shot and few-shot learning settings? 

● RQ2: How effective are automatic evaluation metrics ROUGE, BERTScore, and 

SentenceBERT in capturing the quality and relevance of generated sarcasm explanations? 

● RQ3:  Do larger models with higher parameter counts consistently outperform smaller models 

in multimodal sarcasm explanation tasks, as reflected by evaluation scores? 

To address these questions, our contributions are as follows: 

● We present a comprehensive benchmarking study of 15 VLMs with varying parameter scales 

for the task of multimodal sarcasm explanation, evaluated under both zero-shot and few-shot 

learning settings. 

● We conduct a systematic assessment of automatic evaluation metrics ROUGE, BERTScore, 

and SentenceBERT, to analyze their effectiveness and limitations in capturing the quality and 

relevance of generated sarcasm explanations. 

● We investigate the relationship between model scale and performance, providing empirical 

evidence on whether larger models consistently outperform smaller models or whether more 

efficient architectures remain competitive in low-data scenarios. 

The remainder of this paper is organized as follows: Section 2 reviews related work and discusses the 

theoretical background of sarcasm explanation and vision-language models. Section 3 outlines the 

proposed methodology, including dataset usage, model setup, and evaluation design. Section 4 

presents the experimental results and analysis based on the research questions. Finally, Section 5 

concludes the paper and proposes future research directions for advancing multimodal sarcasm 

explanation. 

2. Related Work  
2.1 Multimodal Sarcasm Explanation 

The study of sarcasm in computational linguistics has seen a growing interest in multimodal sarcasm 

explanation, which moves beyond traditional detection tasks by generating rationales that clarify why a 

given post is sarcastic [7]. Early research mostly concentrated on classification problems, leveraging 

both textual and visual features to determine whether an input is sarcastic [8]. 

A major advancement came with the release of the MuSE dataset, introduced by [1]. in their study titled 

“Nice perfume. How long did you marinate in it?”. This dataset uniquely pairs sarcastic memes with 
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corresponding human-written explanations, encouraging models to produce interpretive outputs rather 

than simple binary classifications. MuSE was evaluated using a Transformer-based model, setting a 

foundation for future work in sarcasm explanation. 

In dialogue-based contexts, Kumar et al. introduced MOSES, a dataset designed for multimodal sarcasm 

explanation in conversational settings. Their work demonstrated how sarcasm explanations could be 

extended across multi-turn dialogue, incorporating not only the sarcastic utterance but also its 

surrounding context. Building upon this, the MAF framework applied cross-modal fusion techniques for 

sarcasm explanation in multi-party conversations, further enriching the field [9]. 

Beyond explanation, a number of studies have continued to focus on multimodal sarcasm detection. 

Chen et al. developed the CS4MSD framework, which integrates CLIP with contrastive sentiment 

signals to detect sarcasm based on textual-visual incongruity [10], [11]. Similarly, SarcNet, introduced 

by Yue et al. in 2024, expands the multilingual and multimodal coverage of sarcasm by providing 

annotations for both text and image modalities independently [12]. 

A comprehensive review by Farabi et al. in 2024 outlined recent advances and trends in multimodal 

sarcasm research, highlighting the increasing role of large-scale vision-language models in this area 

[13]. Other datasets and frameworks have emerged, such as MMSD2.0 [10], which adopts a multi-view 

strategy using CLIP, and models that incorporate audio signals alongside visual and textual inputs, such 

as the approach proposed by Wang et al. (2025) [9]. Recent developments have also proposed sentiment-

aware and representation-aligned deep learning frameworks that enhance sarcasm detection by modeling 

cross-modal emotional incongruity and refining multimodal fusion strategies [14]. 

These studies collectively illustrate the field’s shift toward deeper and more interpretable sarcasm 

understanding through multimodal architectures, benchmark datasets, and hybrid input modalities. 

2.2 VLM for Sarcasm Detection 

In recent years, VLMs have proven highly effective in handling sarcasm detection tasks that combine 

both text and image modalities. A notable advancement was the introduction of S³ Agent, described by 

Wang et al. in 2024. They proposed a multi-view agent framework based on large VLMs for zero-shot 

multi-modal sarcasm detection, achieving a 13.2% accuracy improvement on the MMSD2.0 dataset 

through perspectives of superficial expression, semantic information, and sentiment alignment [15]. 

Further research by Tang et al. (2024) leveraged generative Large Language Models (LLMs) with visual 

instruction and demonstration retrieval techniques. Their model achieved state-of-the-art performance 

on both in-domain (MMSD2.0) and out-of-domain (RedEval) test sets, highlighting the importance of 

LLM-based prompting and visual context in sarcasm detection [16]. 

More recently, Zhang et al. (2025) introduced Commander‑GPT, a multi-modal chain-of-thought 

framework that decomposes the sarcasm detection task into sub-tasks handled by specialized agents. 
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This method yielded an impressive 19.3% F1 improvement across MMSD benchmarks without any task-

specific fine-tuning [17]. 

Similarly, Ramakrishnan et al. (2025) presented IRONIC, which builds coherence-aware reasoning 

chains in a zero-shot setting. By leveraging inter-modal coherence relations, IRONIC outperformed 

existing multi-modal baselines, demonstrating the power of reasoning-inspired architectures for sarcasm 

detection [18]. 

Complementing these agent-based approaches, it proposed VisLingInstruct, an autonomous instruction 

optimization framework for multi-modal LLMs. By refining instruction prompts and improving visual 

feature extraction, VisLingInstruct enhanced zero-shot performance across several standard benchmarks 

[15]. 

Collectively, these studies highlight a shift from fusion-focused architectures to agent- and reasoning-

based frameworks that exploit VLLMs’ inherent reasoning capabilities. This move enhances 

adaptability in low-resource settings and robustness across various domains an essential evolution for 

real-world sarcasm detection systems. 

3.3 Zero-shot and Few-shot Prompting 

Prompting strategies, especially zero-shot and few-shot techniques, have gained prominence as efficient 

alternatives to full-model fine-tuning in Natural Language Processing (NLP) and Vision-Language tasks 

[19]. These approaches allow large language models (LLMs) and VLMs to generalize to new tasks by 

conditioning their outputs on task-descriptive prompts and a few demonstration examples, rather than 

relying on task-specific training data [20]. 

The emergence of GPT-3 marked a significant transition in natural language processing, showcasing 

how large language models could tackle diverse NLP challenges through carefully designed prompts 

with minimal training examples. This approach subsequently evolved to encompass multimodal 

applications, where architectures such as Flamingo and GPT-4V integrate visual encoding components 

with language generation modules to process combined image-text-instruction inputs, enabling 

sophisticated capabilities including image captioning, visual question answering, and visual 

commonsense reasoning [21], [22]. 

Within multimodal sarcasm research, recent investigations by Tang et al. (2024) and Wang et al. (2024) 

have employed prompt-based methodologies for sarcasm detection using pre-trained vision-language 

models without additional fine-tuning [23], [24]. These studies revealed that prompt engineering 

elements such as linguistic cues, reasoning frameworks, and the sequential arrangement of visual and 

textual components substantially influence model performance. Building on these advancements, 

researchers have proposed dynamic prompt optimization techniques that adaptively refine instructions 

to enhance sarcasm detection accuracy, outperforming traditional static prompting methods [25]. 
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Despite these advances, most prompt-based multimodal studies remain detection-focused, rarely 

exploring explanation generation. Additionally, few studies investigate how model size and prompt 

design interact in shaping output quality under low-resource conditions [26]. In contrast to prior studies, 

our work systematically benchmarks a wide range of VLMs on multimodal sarcasm explanation, with 

attention to model scaling and evaluation metrics. 

3. Methods 

3.1 Dataset 

The dataset used in this study is MORE (https://github.com/LCS2-IIITD/ Multimodal-

Sarcasm-Explanation-MuSE), which was released in the paper [1]. This dataset comprises 3,510 

social media posts where both images and their corresponding captions collaboratively convey sarcastic 

meaning. Each post is accompanied by a concise human-written explanation sentence that explicitly 

reveals the underlying irony, making MORE one of the few resources that provide multimodal sarcasm 

data paired with interpretative explanations. The dataset is divided into training, validation, and test 

subsets. In this research, we specifically utilize the test subset to benchmark the performance of various 

models, comprising 352 examples that include the original images, captions, and corresponding ground-

truth explanations. Leveraging this dataset allows for a rigorous evaluation of model capabilities in 

understanding and explaining sarcasm in a multimodal context. 

3.2 Exploratory Data Analysis (EDA) 

Before conducting model experiments, we performed a targeted exploratory analysis of the MORE test 

set to characterize the length of the ground truth explanations. For this purpose, we calculated the token 

length by splitting each explanation string on whitespace. The average explanation length is 12.60 

tokens, with most examples containing fewer than 25 tokens. Only a small number of outliers exceed 40 

tokens. 

This distribution indicates that the majority of reference explanations are concise and can be generated 

comfortably within a relatively short output window. Based on this analysis, we set a maximum 

generation length of 50 tokens to ensure that even the longest explanations could be covered without 

truncation while also preventing models from producing excessively verbose outputs. Figure 1 illustrates 

the histogram of explanation token lengths in the test set. 
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Figure 1: Token Length Distribution of Ground Truth Explanations 

3.3 Model and Prompting 

In this section, we present our comprehensive evaluation framework for Vision-Language Models 

(VLMs) ranging from 0.5B to 4B parameters. Our experimental design encompasses model selection, 

evaluation protocols, computational infrastructure, and hyperparameter exploration to ensure robust and 

reproducible results. We evaluated 15 VLMs spanning different architectural paradigms and parameter 

scales. The selected models represent diverse approaches to vision-language understanding, enabling 

comprehensive analysis across various model families: 

Below One Billion Parameters: 

● llava-hf/llava-onevision-qwen2-0.5b-ov-hf: A compact variant of the LLaVA-OneVision 

architecture that integrates Qwen2 language backbone with vision encoder for multimodal 

understanding. This model demonstrates efficient parameter utilization for vision-language tasks 

while maintaining competitive performance [27]. 

● HuggingFaceTB/SmolVLM2-500M-Video-Instruct: An instruction-tuned variant of the 

SmolVLM2 architecture specifically designed for video understanding tasks. The model 

incorporates temporal reasoning capabilities within a compact parameter budget [28]. 

● apple/FastVLM-0.5B-Stage3: Apple's efficient vision-language model optimized for fast 

inference while maintaining accuracy. The three-stage training approach focuses on progressive 

capability development from basic vision-text alignment to complex reasoning [29]. 
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One Billion Parameters: 

● ByteDance/Sa2VA-1B: A streamlined architecture that employs sparse attention mechanisms for 

efficient vision-language processing. The model demonstrates strong performance on visual 

question answering while maintaining computational efficiency [30]. 

● apple/FastVLM-1.5B-Stage3: The scaled-up version of FastVLM with enhanced capacity for 

complex multimodal reasoning tasks. The model benefits from increased parameter count while 

maintaining the efficient training paradigm [29]. 

● deepseek-ai/deepseek-vl-1.3b-chat: A conversational vision-language model that emphasizes 

natural dialogue capabilities combined with visual understanding. The architecture incorporates 

specialized training for multi-turn visual conversations [31]. 

Two Billion Parameters: 

● HuggingFaceTB/SmolVLM2-2.2B-Instruct: The instruction-tuned variant of SmolVLM2 that 

demonstrates strong performance on instruction-following tasks across vision and language 

modalities. The model architecture emphasizes efficient cross-modal attention mechanisms [28]. 

● Qwen/Qwen2-VL-2B-Instruct: An instruction-tuned vision-language model from the Qwen2 

family that integrates advanced visual encoding with powerful language understanding capabilities. 

The model shows particular strength in detailed visual description and reasoning tasks [32]. 

● ibm-granite/granite-vision-3.2-2b: IBM's granite-based vision-language model that leverages 

enterprise-grade training data and robust architectural design for reliable multimodal performance 

across diverse domains [33]. 

Three Billion Parameters: 

● Qwen/Qwen2.5-VL-3B-Instruct: The latest iteration of Qwen's vision-language series, 

incorporating architectural improvements and enhanced training procedures for superior 

multimodal understanding and instruction following [32]. 

● TencentBAC/TBAC-VLR1-3B-preview: Tencent's vision-language reasoning model that 

emphasizes logical reasoning capabilities combined with visual understanding, particularly 

designed for complex multimodal reasoning tasks 

https://huggingface.co/TencentBAC/TBAC-VLR1-3B-preview [34]. 

● deepseek-ai/deepseek-vl2-tiny: The compact version of DeepSeek's second-generation vision-

language architecture, featuring improved efficiency and performance compared to its predecessor 

while maintaining a small parameter footprint [31]. 

 

https://huggingface.co/TencentBAC/TBAC-VLR1-3B-preview
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Four Billion Parameters: 

● microsoft/Phi-3.5-vision-instruct: Microsoft's Phi-3.5 model extended with vision capabilities, 

featuring efficient parameter utilization and strong performance on instruction-following tasks 

across modalities [35]. 

● google/gemma-3-4b-it: Google's instruction-tuned Gemma model extended for vision-language 

tasks, leveraging the robust Gemma architecture with multimodal capabilities for comprehensive 

understanding [36]. 

● ByteDance/Sa2VA-4B: The larger variant of the Sa2VA architecture with enhanced capacity for 

complex vision-language understanding while maintaining the efficient sparse attention 

mechanisms [30]. 

.               

Figure 2: Illustration of prompting setup. 

Our evaluation framework employs two primary prompting strategies to assess model capabilities 

comprehensively. From Figure 2 We designed a consistent chat-style prompt format to evaluate all 

models in both zero-shot and few-shot settings. The prompt simulates a helpful assistant tasked with 

explaining the sarcastic meaning of a multimodal social media post. Zero-shot prompting involves 

providing the model only with the image, the caption, and a single instruction that explicitly asks the 

model to interpret the sarcasm without repeating the caption. The model has no prior examples and must 

rely solely on its pretrained knowledge. The instruction is kept concise and clear to avoid ambiguity. 

Few-shot prompting, by contrast, includes several example explanations before the actual task. These 

examples serve as demonstrations of the desired output format and tone. Although they are not tied to 
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the current image or caption, they help guide the model toward generating concise, human-like sarcastic 

interpretations. In our prompt, we provide five short explanation examples. 

All experiments were conducted on NVIDIA Tesla T4 GPUs, providing standardized computational 

resources across all model evaluations. We adopted a consistent decoding configuration across all 

models to ensure comparability and reduce confounding factors. Specifically, we set 

max_new_tokens=50 to accommodate the longest ground truth explanations while preventing overly 

verbose generations, and used deterministic decoding do_sample=False to produce stable outputs for 

evaluation. 

This approach ensures a robust and fair assessment of VLM capabilities across different scales and 

architectures, offering reliable insights into the current state of vision-language understanding in 

compact model formats. 

3.4 Evaluation Metrics 

Our evaluation of multimodal sarcasm explanation capabilities employs three complementary metrics 

that capture different aspects of text quality and semantic similarity. These metrics provide a 

comprehensive assessment framework that evaluates both surface-level textual similarity and deeper 

semantic understanding. 

3.4.1 ROUGE Metrics 

Recall-Oriented Understudy for Gisting Evaluation (ROUGE) serves as our primary lexical overlap 

metric, measuring the similarity between generated explanations and reference explanations through n-

gram matching [37]. We employ three ROUGE variants to capture different granularities of textual 

similarity: 

• ROUGE-1: Measures unigram overlap between generated and reference texts, providing insights 

into vocabulary coverage and basic content similarity. This metric evaluates whether the model 

captures the essential keywords and concepts present in human-written sarcasm explanations. 

ROUGE-1 is particularly valuable for assessing whether models identify key sarcastic elements, 

contradictions, or contextual cues that are explicitly mentioned in reference explanations. 

• ROUGE-2: Evaluates bigram overlap, capturing local phrase-level similarities and basic syntactic 

patterns. This metric provides insights into whether models maintain coherent phrase structures and 

can reproduce common sarcasm-related expressions found in reference explanations. ROUGE-2 is 

essential for understanding how well models capture the linguistic patterns typical of sarcasm 

explanation discourse. 
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• ROUGE-L: Measures the longest common subsequence between generated and reference texts, 

emphasizing sentence-level structural similarity and maintaining the overall flow of explanation. 

This metric evaluates whether models preserve the logical progression and argumentative structure 

present in human explanations of sarcastic content. ROUGE-L is particularly important for sarcasm 

explanation tasks as it captures the coherence of reasoning chains that explain why content is 

sarcastic. 

3.4.2 BERTScore 

BERTScore addresses the limitations of lexical-based metrics by leveraging contextualized embeddings 

from pre-trained BERT models to evaluate semantic similarity. Unlike ROUGE metrics that rely on 

exact token matching, BERTScore computes similarity scores based on contextual embeddings, 

enabling evaluation of semantic equivalence even when surface forms differ [38]. 

For multimodal sarcasm explanation evaluation, BERTScore provides crucial advantages by capturing 

semantic relationships that may not be apparent through lexical overlap. Sarcasm explanations often 

involve paraphrasing, synonymous expressions, and conceptually equivalent statements that describe 

the same underlying sarcastic mechanism. BERTScore effectively identifies these semantic similarities, 

providing a more nuanced evaluation of explanation quality. 

The metric computes precision, recall, and F1 scores by matching tokens between generated and 

reference texts based on their BERT embeddings. This approach enables recognition of semantically 

similar explanations that might use different vocabulary to describe the same sarcastic elements, 

contextual contradictions, or ironic situations. 

3.4.3 Sentence-BERT (SentBERT) 

SentBERT extends BERT's capabilities to sentence-level semantic similarity evaluation, providing 

holistic assessment of explanation quality at the complete utterance level. Unlike token-level matching 

approaches, SentBERT evaluates the overall semantic coherence and meaning preservation of entire 

explanation passages [39]. 

For sarcasm explanation tasks, SentBERT is particularly valuable because it captures the global semantic 

structure of explanations, including complex relationships between different parts of the reasoning 

process. Sarcasm explanations typically involve multi-step reasoning that connects visual context, 

textual content, and implicit social or cultural knowledge. SentBERT's sentence-level evaluation 

approach effectively captures whether generated explanations maintain the overall logical coherence 

and semantic integrity of reference explanations. 

The metric computes cosine similarity between sentence embeddings of generated and reference 

explanations, providing a continuous similarity score that reflects the degree of semantic alignment. This 
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approach is especially beneficial for evaluating creative or diverse explanation styles that may be 

semantically equivalent to references while using different linguistic expressions. 

These three metric categories work synergistically to provide comprehensive evaluation coverage. 

ROUGE metrics ensure that models capture essential lexical elements and maintain structural coherence, 

BERTScore validates semantic equivalence at the token level, and SentBERT confirms overall meaning 

preservation at the discourse level. This multi-layered evaluation approach is particularly crucial for 

sarcasm explanation tasks, where successful performance requires both precise identification of sarcastic 

elements and coherent articulation of the underlying mechanisms that create sarcastic meaning. 

The combination of these metrics enables robust evaluation that accounts for the complexity and 

diversity inherent in human explanations of sarcastic content, providing reliable assessment of model 

capabilities across different dimensions of text quality and semantic understanding. 

This comprehensive methodology ensures robust evaluation of VLM capabilities across different 

scales and architectures, providing reliable insights into the current state of vision-language 

understanding in compact model formats. 

4. Results and Discussion 

This section presents the results, detailing the actual parameter counts of all models, their comparative 

performance in zero-shot and few-shot settings, illustrative case studies of metric limitations, and 

comparisons with prior multimodal baselines. 

4.1 Model Parameter Scale Overview 

Table 1: Actual Parameter Counts of Evaluated VLMs 

Model Model Number Parameters 

FastVLM-0.5B 622,403,552 

FastVLM-1.5B 1,675,423,328 

SmolVLM-500M 507,482,304 

SmolVLM-2.2B  2,246,784,880 

Qwen2-VL-2B 2,208,985,600 

Qwen2.5-VL-3B 3,754,622,976 

DeepSeek-VL-1.3B 1,975,235,584 
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DeepSeek-VL2-Tiny 3,370,501,440 

Sa2VA-1B 1,163,665,458 

Sa2VA-4B 3,941,809,458 

GraniteVision3.2-2B 2,975,396,928 

TBAC-VLR1 3,754,622,976 

LLaVA-OV-0.5B 893,675,552 

Gemma3-4B 4,300,079,472 

Phi3.5-Vision 4,146,621,440 

Table 1 presents the precise parameter counts for all evaluated models. While many architectures are 

labeled according to nominal parameter sizes, the actual number of parameters often diverges 

substantially from these labels. For instance, DeepSeek-VL-1.3B includes approximately 1.97 billion 

parameters, significantly exceeding its nominal size, while Sa2VA-4B comprises about 3.94 billion 

parameters, falling slightly short of the 4-billion mark. This observation reflects the necessity of 

reporting the actual parameter counts to provide a clearer understanding of each model’s scale beyond 

nominal labels. Figure 3 illustrates the distribution of parameter scales across all evaluated models. 
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Figure 3: Distribution of Model Parameter Scales 

4.2 Zero-shot and Few-shot Performance Comparison 

Table 2 and Table 3 reports the comparative performance of all evaluated models in both zero-shot and 

few-shot settings, measured across five metrics: ROUGE-1, ROUGE-2, ROUGE-L, BERTScore F1, 

and SentBERT. Overall, the results show substantial variability not only between models of different 

scales but also within the same model across different evaluation criteria. 
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Table 2: Zero-shot Performance Across Evaluation Metrics 

Model ROUGE-1 ROUGE-2 ROUGE-L BERTScore F1 SentBERT 

FastVLM-0.5B 22.40 8.75 19.02 85.67 45.93 

FastVLM-1.5B 23.59 8.23 19.44 85.95 47.30 

SmolVLM-500M 31.58 13.94 27.86 88.64 50.39 

SmolVLM-2.2B  25.78 9.25 21.66 87.38 45.23 

Qwen2-VL-2B 24.65 7.24 20.65 87.21 45.56 

Qwen2.5-VL-3B 22.36 5.02 17.61 86.42 46.48 

DeepSeek-VL-1.3B 21.54 8.04 18.43 85.82 42.08 

DeepSeek-VL2-Tiny 22.52 6.46 18.51 86.00 42.98 

Sa2VA-1B 24.55 7.03 20.60 87.19 47.22 

Sa2VA-4B 23.76 6.80 19.20 86.81 46.06 

GraniteVision3.2-2B 21.31 5.60 17.53 86.33 45.55 

TBAC-VLR1 22.28 5.16 17.58 86.38 46.34 

LLaVA-OV-0.5B 27.75 9.14 24.10 87.41 49.55 

Gemma3-4B 15.96 1.82 12.64 86.18 39.63 

Phi3.5-Vision 24.14 6.92 19.63 86.98 50.54 

 

In the zero-shot scenario, SmolVLM-500M achieved the highest ROUGE scores among all models, with 

ROUGE-1 reaching 31.58 and ROUGE-L reaching 27.86. These values notably exceed those of 

significantly larger models such as Sa2VA-4B (ROUGE-1: 23.76) and Qwen2.5-VL-3B (ROUGE-1: 

22.36), suggesting that smaller models can be highly competitive in producing surface-level n-gram 

overlaps with reference explanations. A similar pattern emerged in BERTScore F1, where most models 

clustered closely between 85.5 and 88.6, indicating consistent semantic similarity across architectures. 

SmolVLM-500M again achieved the highest BERTScore F1 of 88.64, while the lowest was recorded 

by FastVLM-0.5B at 85.67. SentBERT scores, reflecting sentence-level embedding similarity, exhibited 
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greater dispersion, with Gemma3-4B obtaining the lowest score (39.63) and Phi3.5-Vision reaching the 

highest (50.54). 

In the few-shot condition, several models benefited from prompt-based guidance, with increases 

particularly visible in the larger architectures. For example, Sa2VA-4B improved its ROUGE-1 from 

23.76 to 26.64 and its SentBERT from 46.06 to 49.30. Similarly, Qwen2-VL-2B saw increases across 

ROUGE metrics and SentBERT similarity, demonstrating responsiveness to few-shot examples. 

However, improvements were not uniform across the board. SmolVLM-500M, which had been the top 

performer in ROUGE during zero-shot evaluation, experienced a noticeable drop in ROUGE-1 to 22.97 

and a decline in SentBERT similarity to 35.92, suggesting that additional examples may have reduced 

its generation fidelity or consistency relative to the ground truth. 

Table 3: Few-shot Performance Across Evaluation Metrics 

Model ROUGE-1 ROUGE-2 ROUGE-L BERTScore F1 SentBERT 

FastVLM-0.5B 19.34 7.10 16.21 85.58 41.79 

FastVLM-1.5B 22.26 7.63 19.10 86.30 45.33 

SmolVLM-500M 22.97 8.36 20.35 87.72 35.92 

SmolVLM-2.2B  28.09 13.33 25.25 87.51 43.42 

Qwen2-VL-2B 25.86 9.15 22.24 87.77 46.20 

Qwen2.5-VL-3B 22.34 6.06 18.11 86.60 46.68 

DeepSeek-VL-1.3B 20.42 7.46 18.36 87.98 32.02 

DeepSeek-VL2-Tiny 21.18 8.70 18.18 85.37 29.81 

Sa2VA-1B 21.96 6.72 18.72 87.13 40.27 

Sa2VA-4B 26.64 8.95 22.53 87.13 49.30 

GraniteVision3.2-2B 25.08 8.62 21.30 87.28 46.52 

TBAC-VLR1 22.28 5.70 17.98 86.59 46.73 

LLaVA-OV-0.5B 26.95 10.19 23.23 87.79 49.47 

Gemma3-4B 16.93 1.85 14.07 86.66 40.14 

Phi3.5-Vision 22.75 8.18 20.02 87.38 40.30 
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Interestingly, BERTScore F1 remained relatively stable across most configurations, with few-shot 

performance ranging narrowly from approximately 85.3 to 87.9, showing less sensitivity to the prompt 

condition than other metrics. This indicates that while the models' token-level similarity varied with 

prompt inclusion, their overall semantic content alignment was comparatively robust. 

Overall, these results highlight that parameter scale and model capacity did not consistently correlate 

with superior performance across all metrics. Instead, smaller models such as SmolVLM-500M and  

LLaVA-OV-0.5B frequently matched or outperformed larger models in both zero-shot and few-shot 

configurations on specific metrics. 

The variability in SentBERT and BERTScore F1 further emphasizes the importance of combining n-

gram-based and embedding-based evaluations to capture both surface similarity and deeper semantic 

alignment. To better illustrate these dynamics, Figure 4 and Figure 5 provides a visual comparison of 

BERTScore F1 and SentBERT scores across all models, highlighting the relative gains and declines 

between the zero-shot and few-shot settings. 

 

Figure 4: BERTScore F1 Across Models in Zero-shot and Few-shot Settings. 



 Ikhlasul Amal & Annisa Nur Ramadhani 

 

48 
 

 

Figure 5: SentBERT Similarity Across Models in Zero-shot and Few-shot Settings. 

4.3 Examples Highlighting Metric Divergence 

To complement the aggregate metrics reported previously, we present two representative examples that 

illustrate how different evaluation measures can yield contrasting perspectives on the quality of 

generated explanations. 

 

Figure 6: Example Highlighting High Embedding Similarity Despite Low ROUGE. 

Figure 6 shows an output from Phi3.5-Vision in the zero-shot setting. In this case, although the generated 

prediction provides a paraphrased explanation of why the caption is sarcastic, the n-gram overlap with 

the ground truth remains relatively modest, as indicated by ROUGE-1 and ROUGE-L scores (40.00). 

Nevertheless, BERTScore F1 reached 91.57, suggesting that despite low lexical similarity, the semantic 

content is highly aligned. This example highlights the importance of incorporating embedding-based 
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metrics, which are more tolerant of paraphrasing and can better capture the intended meaning of the 

explanation. 

 

Figure 7: Example Showing Contradictory Predictions with High Similarity Scores. 

In contrast, Figure 7 highlights a critical limitation of automatic similarity metrics when evaluating 

explanation quality. In this example, the prediction simply states, "The EU keeps all the money for 

itself," whereas the ground truth explicitly negates this claim with, "the EU doesn't keep the money for 

itself." Despite the fact that the predicted explanation conveys the opposite meaning of the reference, 

the ROUGE and BERTScore metrics nevertheless report very high similarity scores, with ROUGE-1 

and ROUGE-L 82.35 and BERTScore F1 92.30. 

This discrepancy arises because these metrics primarily rely on surface-level token overlap and 

embedding proximity without robust mechanisms to detect negation or factual contradiction. As a result, 

such outputs can appear highly similar according to automatic measures while effectively conveying 

misinformation. This example underscores the need for caution when interpreting similarity scores in 

isolation. Future work could incorporate additional verification steps, such as entailment detection, 

contradiction analysis, or human evaluation to mitigate the risk of overestimating the quality and factual 

correctness of generated explanations. 

4.4 Comparison with Existing Methods 

To contextualize the performance of the evaluated VLMs, we compare their zero-shot and few-shot 

results against ExMore and ExMoreOCR [1], which were introduced in prior work as baseline methods 

for this dataset. ExMore employs a multimodal Transformer-based encoder-decoder framework that 

integrates image and caption features. Specifically, the architecture combines VGG-19 for visual 

encoding with BART for textual encoding and decoding. Cross-modal learning is performed by 

projecting captions as queries and image regions as keys and values within a Transformer encoder. The 
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final cross-modal representation is subsequently decoded by a pre-trained BART decoder fine-tuned on 

the MORE dataset. 

In addition to the standard ExMore configuration, ExMoreOCR introduces an OCR text stream as a third 

modality, processed in parallel with the caption-image encoder. A gating mechanism dynamically 

weights the relative contributions of image and OCR features before decoding. This tri-modal approach 

was shown to yield improvements over simpler multimodal baselines in the original work. 

Table 4: Comparison with ExMore and ExMoreOCR Baselines 

Model ROUGE-1 ROUGE-2 ROUGE-L BERT F1-Score SentBERT 

SmolVLM-500M 

(Zero-Shot) 
31.58 13.94 27.86 88.64 50.39 

Phi3.5-Vision (Zero-

Shot) 
24.14 6.92 19.63 86.98 50.54 

SmolVLM-2.2B 

(Few-Shot)  
28.09 13.33 25.25 87.51 43.42 

DeepSeek-VL-1.3B 

(Few-Shot) 
20.42 7.46 18.36 87.98 32.02 

LLaVA-OV-0.5B 

(Few-Shot) 
26.95 10.19 23.23 87.79 49.47 

ExMore [1] 27.55 12.49 25.23 87.90 59.12 

ExMoreOCR [1] 24.23 9.89 22.27 87.00 59.57 

Table 4 presents the comparison between ExMore, ExMoreOCR, and selected VLMs evaluated in this 

study. Notably, SmolVLM-500M, despite being a significantly smaller model operating in a zero-shot 

configuration, achieves the highest ROUGE-1 (31.58) and ROUGE-L (27.86) scores among all 

approaches. This performance surpasses ExMore and ExMoreOCR by several points in n-gram overlap 

measures. However, in terms of SentBERT similarity, which better reflects embedding-level alignment, 

ExMoreOCR attains the highest score (59.57), indicating that the tri-modal design contributes to 

stronger sentence-level semantic correspondence with reference explanations. 

These findings suggest that recent general purpose VLMs can rival or exceed specialized multimodal 

architectures in surface-level textual similarity, even without fine-tuning. Nonetheless, methods like 

ExMoreOCR may remain advantageous in capturing nuanced semantic relationships, particularly when 

additional OCR-derived context is available. Overall, this comparison underscores both the progress in 
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pretrained VLM capabilities and the continued relevance of purpose-built architectures when applied to 

explanation generation tasks. 

5. Conclusion  

This study systematically examined the capabilities of contemporary VLMs for the challenging task of 

multimodal sarcasm explanation. Addressing RQ1, our experiments revealed that several general 

purpose VLMs, particularly SmolVLM-500M and Phi3.5-Vision, achieved competitive or superior 

performance compared to specialized architectures, even in zero-shot configurations. This suggests that 

recent advances in large-scale pretraining can enable effective cross-modal understanding without 

extensive task-specific fine-tuning. Regarding RQ2, the analysis demonstrated that while metrics such 

as ROUGE, BERTScore, and SentenceBERT provide valuable quantitative insights, they may 

overestimate explanation quality in cases of superficial textual similarity, failing to detect contradictions 

or factual inaccuracies. For instance, outputs conveying the opposite meaning of the reference still 

achieved high similarity scores, highlighting a limitation in relying solely on automatic measures to 

evaluate explanatory adequacy. In response to RQ3, results showed that larger models with higher 

parameter counts did not consistently outperform smaller models across all metrics and settings. 

Although some larger models obtained marginal gains in certain measures, others were surpassed by 

more compact architectures, underscoring that parameter size alone is not a reliable predictor of 

explanation quality in this domain. 

The key contributions of this work include an extensive benchmarking of diverse VLMs under zero-shot 

and few-shot learning for multimodal sarcasm explanation, a critical evaluation of widely used similarity 

metrics that illustrates both their utility and limitations, and empirical evidence that challenges the 

assumption that larger parameter counts consistently guarantee superior performance on explanatory 

tasks. These findings have several implications. For researchers, they emphasize the need to complement 

automatic evaluation with human judgment or contradiction-aware metrics to obtain a more accurate 

assessment of explanation quality. For practitioners, the results suggest that deploying smaller, more 

efficient VLMs may achieve comparable outcomes to larger models while reducing computational costs. 

Nevertheless, the study has certain limitations. The evaluation was constrained to a finite set of models 

and metrics, and did not incorporate human annotations to validate semantic correctness. In future work, 

we plan to incorporate human evaluation to complement automatic metrics, such as using Likert-scale 

ratings to assess the relevance and clarity of sarcasm explanations. Additionally, human annotators could 

help identify subtle contradictions or mismatches between the generated explanation and the multimodal 

context. Additionally, this study focused exclusively on English-language explanations and a single 

dataset. Future work could explore the performance of multimodal sarcasm explanation models in 

multilingual settings, which would provide insights into cross-cultural and linguistic variations in 
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sarcasm interpretation. Several recent models such as LLaVA, Sa2va, Qwen-VL, Deepseek-VL 

(English/Chinese), Granite Vision, TBAC VLR-1, Phi Vision, and Gemma 3 offer multilingual or cross-

lingual capabilities that could be leveraged for such analysis. Future research directions include 

expanding evaluation to multilingual datasets, developing improved metrics capable of detecting 

negation and factual inconsistencies, and exploring fine-tuning strategies to enhance explanatory 

performance in diverse linguistic contexts. Investigating hybrid approaches that combine pretrained 

VLMs with specialized modules for factual verification may also offer promising avenues to improve 

reliability and trustworthiness in automated explanation generation. 
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